clap_builder/parser/features/
suggestions.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#[cfg(feature = "suggestions")]
use std::cmp::Ordering;

// Internal
use crate::builder::Command;

/// Find strings from an iterable of `possible_values` similar to a given value `v`
/// Returns a Vec of all possible values that exceed a similarity threshold
/// sorted by ascending similarity, most similar comes last
#[cfg(feature = "suggestions")]
pub(crate) fn did_you_mean<T, I>(v: &str, possible_values: I) -> Vec<String>
where
    T: AsRef<str>,
    I: IntoIterator<Item = T>,
{
    let mut candidates: Vec<(f64, String)> = possible_values
        .into_iter()
        // GH #4660: using `jaro` because `jaro_winkler` implementation in `strsim-rs` is wrong
        // causing strings with common prefix >=10 to be considered perfectly similar
        .map(|pv| (strsim::jaro(v, pv.as_ref()), pv.as_ref().to_owned()))
        // Confidence of 0.7 so that bar -> baz is suggested
        .filter(|(confidence, _)| *confidence > 0.7)
        .collect();
    candidates.sort_by(|a, b| a.0.partial_cmp(&b.0).unwrap_or(Ordering::Equal));
    candidates.into_iter().map(|(_, pv)| pv).collect()
}

#[cfg(not(feature = "suggestions"))]
pub(crate) fn did_you_mean<T, I>(_: &str, _: I) -> Vec<String>
where
    T: AsRef<str>,
    I: IntoIterator<Item = T>,
{
    Vec::new()
}

/// Returns a suffix that can be empty, or is the standard 'did you mean' phrase
pub(crate) fn did_you_mean_flag<'a, 'help, I, T>(
    arg: &str,
    remaining_args: &[&std::ffi::OsStr],
    longs: I,
    subcommands: impl IntoIterator<Item = &'a mut Command>,
) -> Option<(String, Option<String>)>
where
    'help: 'a,
    T: AsRef<str>,
    I: IntoIterator<Item = T>,
{
    use crate::mkeymap::KeyType;

    match did_you_mean(arg, longs).pop() {
        Some(candidate) => Some((candidate, None)),
        None => subcommands
            .into_iter()
            .filter_map(|subcommand| {
                subcommand._build_self(false);

                let longs = subcommand.get_keymap().keys().filter_map(|a| {
                    if let KeyType::Long(v) = a {
                        Some(v.to_string_lossy().into_owned())
                    } else {
                        None
                    }
                });

                let subcommand_name = subcommand.get_name();

                let candidate = some!(did_you_mean(arg, longs).pop());
                let score = some!(remaining_args.iter().position(|x| subcommand_name == *x));
                Some((score, (candidate, Some(subcommand_name.to_string()))))
            })
            .min_by_key(|(x, _)| *x)
            .map(|(_, suggestion)| suggestion),
    }
}

#[cfg(all(test, feature = "suggestions"))]
mod test {
    use super::*;

    #[test]
    fn missing_letter() {
        let p_vals = ["test", "possible", "values"];
        assert_eq!(did_you_mean("tst", p_vals.iter()), vec!["test"]);
    }

    #[test]
    fn ambiguous() {
        let p_vals = ["test", "temp", "possible", "values"];
        assert_eq!(did_you_mean("te", p_vals.iter()), vec!["test", "temp"]);
    }

    #[test]
    fn unrelated() {
        let p_vals = ["test", "possible", "values"];
        assert_eq!(
            did_you_mean("hahaahahah", p_vals.iter()),
            Vec::<String>::new()
        );
    }

    #[test]
    fn best_fit() {
        let p_vals = [
            "test",
            "possible",
            "values",
            "alignmentStart",
            "alignmentScore",
        ];
        assert_eq!(
            did_you_mean("alignmentScorr", p_vals.iter()),
            vec!["alignmentStart", "alignmentScore"]
        );
    }

    #[test]
    fn best_fit_long_common_prefix_issue_4660() {
        let p_vals = ["alignmentScore", "alignmentStart"];
        assert_eq!(
            did_you_mean("alignmentScorr", p_vals.iter()),
            vec!["alignmentStart", "alignmentScore"]
        );
    }

    #[test]
    fn flag_missing_letter() {
        let p_vals = ["test", "possible", "values"];
        assert_eq!(
            did_you_mean_flag("tst", &[], p_vals.iter(), []),
            Some(("test".to_owned(), None))
        );
    }

    #[test]
    fn flag_ambiguous() {
        let p_vals = ["test", "temp", "possible", "values"];
        assert_eq!(
            did_you_mean_flag("te", &[], p_vals.iter(), []),
            Some(("temp".to_owned(), None))
        );
    }

    #[test]
    fn flag_unrelated() {
        let p_vals = ["test", "possible", "values"];
        assert_eq!(
            did_you_mean_flag("hahaahahah", &[], p_vals.iter(), []),
            None
        );
    }

    #[test]
    fn flag_best_fit() {
        let p_vals = [
            "test",
            "possible",
            "values",
            "alignmentStart",
            "alignmentScore",
        ];
        assert_eq!(
            did_you_mean_flag("alignmentScorr", &[], p_vals.iter(), []),
            Some(("alignmentScore".to_owned(), None))
        );
    }
}