1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */
/* double log1p(double x)
 * Return the natural logarithm of 1+x.
 *
 * Method :
 *   1. Argument Reduction: find k and f such that
 *                      1+x = 2^k * (1+f),
 *         where  sqrt(2)/2 < 1+f < sqrt(2) .
 *
 *      Note. If k=0, then f=x is exact. However, if k!=0, then f
 *      may not be representable exactly. In that case, a correction
 *      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
 *      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
 *      and add back the correction term c/u.
 *      (Note: when x > 2**53, one can simply return log(x))
 *
 *   2. Approximation of log(1+f): See log.c
 *
 *   3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
 *
 * Special cases:
 *      log1p(x) is NaN with signal if x < -1 (including -INF) ;
 *      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
 *      log1p(NaN) is that NaN with no signal.
 *
 * Accuracy:
 *      according to an error analysis, the error is always less than
 *      1 ulp (unit in the last place).
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following
 * constants. The decimal values may be used, provided that the
 * compiler will convert from decimal to binary accurately enough
 * to produce the hexadecimal values shown.
 *
 * Note: Assuming log() return accurate answer, the following
 *       algorithm can be used to compute log1p(x) to within a few ULP:
 *
 *              u = 1+x;
 *              if(u==1.0) return x ; else
 *                         return log(u)*(x/(u-1.0));
 *
 *       See HP-15C Advanced Functions Handbook, p.193.
 */

use core::f64;

const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */

#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn log1p(x: f64) -> f64 {
    let mut ui: u64 = x.to_bits();
    let hfsq: f64;
    let mut f: f64 = 0.;
    let mut c: f64 = 0.;
    let s: f64;
    let z: f64;
    let r: f64;
    let w: f64;
    let t1: f64;
    let t2: f64;
    let dk: f64;
    let hx: u32;
    let mut hu: u32;
    let mut k: i32;

    hx = (ui >> 32) as u32;
    k = 1;
    if hx < 0x3fda827a || (hx >> 31) > 0 {
        /* 1+x < sqrt(2)+ */
        if hx >= 0xbff00000 {
            /* x <= -1.0 */
            if x == -1. {
                return x / 0.0; /* log1p(-1) = -inf */
            }
            return (x - x) / 0.0; /* log1p(x<-1) = NaN */
        }
        if hx << 1 < 0x3ca00000 << 1 {
            /* |x| < 2**-53 */
            /* underflow if subnormal */
            if (hx & 0x7ff00000) == 0 {
                force_eval!(x as f32);
            }
            return x;
        }
        if hx <= 0xbfd2bec4 {
            /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
            k = 0;
            c = 0.;
            f = x;
        }
    } else if hx >= 0x7ff00000 {
        return x;
    }
    if k > 0 {
        ui = (1. + x).to_bits();
        hu = (ui >> 32) as u32;
        hu += 0x3ff00000 - 0x3fe6a09e;
        k = (hu >> 20) as i32 - 0x3ff;
        /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
        if k < 54 {
            c = if k >= 2 {
                1. - (f64::from_bits(ui) - x)
            } else {
                x - (f64::from_bits(ui) - 1.)
            };
            c /= f64::from_bits(ui);
        } else {
            c = 0.;
        }
        /* reduce u into [sqrt(2)/2, sqrt(2)] */
        hu = (hu & 0x000fffff) + 0x3fe6a09e;
        ui = (hu as u64) << 32 | (ui & 0xffffffff);
        f = f64::from_bits(ui) - 1.;
    }
    hfsq = 0.5 * f * f;
    s = f / (2.0 + f);
    z = s * s;
    w = z * z;
    t1 = w * (LG2 + w * (LG4 + w * LG6));
    t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
    r = t2 + t1;
    dk = k as f64;
    s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI
}