1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */
/* sqrt(x)
 * Return correctly rounded sqrt.
 *           ------------------------------------------
 *           |  Use the hardware sqrt if you have one |
 *           ------------------------------------------
 * Method:
 *   Bit by bit method using integer arithmetic. (Slow, but portable)
 *   1. Normalization
 *      Scale x to y in [1,4) with even powers of 2:
 *      find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
 *              sqrt(x) = 2^k * sqrt(y)
 *   2. Bit by bit computation
 *      Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
 *           i                                                   0
 *                                     i+1         2
 *          s  = 2*q , and      y  =  2   * ( y - q  ).         (1)
 *           i      i            i                 i
 *
 *      To compute q    from q , one checks whether
 *                  i+1       i
 *
 *                            -(i+1) 2
 *                      (q + 2      ) <= y.                     (2)
 *                        i
 *                                                            -(i+1)
 *      If (2) is false, then q   = q ; otherwise q   = q  + 2      .
 *                             i+1   i             i+1   i
 *
 *      With some algebraic manipulation, it is not difficult to see
 *      that (2) is equivalent to
 *                             -(i+1)
 *                      s  +  2       <= y                      (3)
 *                       i                i
 *
 *      The advantage of (3) is that s  and y  can be computed by
 *                                    i      i
 *      the following recurrence formula:
 *          if (3) is false
 *
 *          s     =  s  ,       y    = y   ;                    (4)
 *           i+1      i          i+1    i
 *
 *          otherwise,
 *                         -i                     -(i+1)
 *          s     =  s  + 2  ,  y    = y  -  s  - 2             (5)
 *           i+1      i          i+1    i     i
 *
 *      One may easily use induction to prove (4) and (5).
 *      Note. Since the left hand side of (3) contain only i+2 bits,
 *            it does not necessary to do a full (53-bit) comparison
 *            in (3).
 *   3. Final rounding
 *      After generating the 53 bits result, we compute one more bit.
 *      Together with the remainder, we can decide whether the
 *      result is exact, bigger than 1/2ulp, or less than 1/2ulp
 *      (it will never equal to 1/2ulp).
 *      The rounding mode can be detected by checking whether
 *      huge + tiny is equal to huge, and whether huge - tiny is
 *      equal to huge for some floating point number "huge" and "tiny".
 *
 * Special cases:
 *      sqrt(+-0) = +-0         ... exact
 *      sqrt(inf) = inf
 *      sqrt(-ve) = NaN         ... with invalid signal
 *      sqrt(NaN) = NaN         ... with invalid signal for signaling NaN
 */

use core::f64;

#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn sqrt(x: f64) -> f64 {
    // On wasm32 we know that LLVM's intrinsic will compile to an optimized
    // `f64.sqrt` native instruction, so we can leverage this for both code size
    // and speed.
    llvm_intrinsically_optimized! {
        #[cfg(target_arch = "wasm32")] {
            return if x < 0.0 {
                f64::NAN
            } else {
                unsafe { ::core::intrinsics::sqrtf64(x) }
            }
        }
    }
    #[cfg(target_feature = "sse2")]
    {
        // Note: This path is unlikely since LLVM will usually have already
        // optimized sqrt calls into hardware instructions if sse2 is available,
        // but if someone does end up here they'll apprected the speed increase.
        #[cfg(target_arch = "x86")]
        use core::arch::x86::*;
        #[cfg(target_arch = "x86_64")]
        use core::arch::x86_64::*;
        unsafe {
            let m = _mm_set_sd(x);
            let m_sqrt = _mm_sqrt_pd(m);
            _mm_cvtsd_f64(m_sqrt)
        }
    }
    #[cfg(not(target_feature = "sse2"))]
    {
        use core::num::Wrapping;

        const TINY: f64 = 1.0e-300;

        let mut z: f64;
        let sign: Wrapping<u32> = Wrapping(0x80000000);
        let mut ix0: i32;
        let mut s0: i32;
        let mut q: i32;
        let mut m: i32;
        let mut t: i32;
        let mut i: i32;
        let mut r: Wrapping<u32>;
        let mut t1: Wrapping<u32>;
        let mut s1: Wrapping<u32>;
        let mut ix1: Wrapping<u32>;
        let mut q1: Wrapping<u32>;

        ix0 = (x.to_bits() >> 32) as i32;
        ix1 = Wrapping(x.to_bits() as u32);

        /* take care of Inf and NaN */
        if (ix0 & 0x7ff00000) == 0x7ff00000 {
            return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
        }
        /* take care of zero */
        if ix0 <= 0 {
            if ((ix0 & !(sign.0 as i32)) | ix1.0 as i32) == 0 {
                return x; /* sqrt(+-0) = +-0 */
            }
            if ix0 < 0 {
                return (x - x) / (x - x); /* sqrt(-ve) = sNaN */
            }
        }
        /* normalize x */
        m = ix0 >> 20;
        if m == 0 {
            /* subnormal x */
            while ix0 == 0 {
                m -= 21;
                ix0 |= (ix1 >> 11).0 as i32;
                ix1 <<= 21;
            }
            i = 0;
            while (ix0 & 0x00100000) == 0 {
                i += 1;
                ix0 <<= 1;
            }
            m -= i - 1;
            ix0 |= (ix1 >> (32 - i) as usize).0 as i32;
            ix1 = ix1 << i as usize;
        }
        m -= 1023; /* unbias exponent */
        ix0 = (ix0 & 0x000fffff) | 0x00100000;
        if (m & 1) == 1 {
            /* odd m, double x to make it even */
            ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
            ix1 += ix1;
        }
        m >>= 1; /* m = [m/2] */

        /* generate sqrt(x) bit by bit */
        ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
        ix1 += ix1;
        q = 0; /* [q,q1] = sqrt(x) */
        q1 = Wrapping(0);
        s0 = 0;
        s1 = Wrapping(0);
        r = Wrapping(0x00200000); /* r = moving bit from right to left */

        while r != Wrapping(0) {
            t = s0 + r.0 as i32;
            if t <= ix0 {
                s0 = t + r.0 as i32;
                ix0 -= t;
                q += r.0 as i32;
            }
            ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
            ix1 += ix1;
            r >>= 1;
        }

        r = sign;
        while r != Wrapping(0) {
            t1 = s1 + r;
            t = s0;
            if t < ix0 || (t == ix0 && t1 <= ix1) {
                s1 = t1 + r;
                if (t1 & sign) == sign && (s1 & sign) == Wrapping(0) {
                    s0 += 1;
                }
                ix0 -= t;
                if ix1 < t1 {
                    ix0 -= 1;
                }
                ix1 -= t1;
                q1 += r;
            }
            ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
            ix1 += ix1;
            r >>= 1;
        }

        /* use floating add to find out rounding direction */
        if (ix0 as u32 | ix1.0) != 0 {
            z = 1.0 - TINY; /* raise inexact flag */
            if z >= 1.0 {
                z = 1.0 + TINY;
                if q1.0 == 0xffffffff {
                    q1 = Wrapping(0);
                    q += 1;
                } else if z > 1.0 {
                    if q1.0 == 0xfffffffe {
                        q += 1;
                    }
                    q1 += Wrapping(2);
                } else {
                    q1 += q1 & Wrapping(1);
                }
            }
        }
        ix0 = (q >> 1) + 0x3fe00000;
        ix1 = q1 >> 1;
        if (q & 1) == 1 {
            ix1 |= sign;
        }
        ix0 += m << 20;
        f64::from_bits((ix0 as u64) << 32 | ix1.0 as u64)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use core::f64::*;

    #[test]
    fn sanity_check() {
        assert_eq!(sqrt(100.0), 10.0);
        assert_eq!(sqrt(4.0), 2.0);
    }

    /// The spec: https://en.cppreference.com/w/cpp/numeric/math/sqrt
    #[test]
    fn spec_tests() {
        // Not Asserted: FE_INVALID exception is raised if argument is negative.
        assert!(sqrt(-1.0).is_nan());
        assert!(sqrt(NAN).is_nan());
        for f in [0.0, -0.0, INFINITY].iter().copied() {
            assert_eq!(sqrt(f), f);
        }
    }

    #[test]
    fn conformance_tests() {
        let values = [3.14159265359, 10000.0, f64::from_bits(0x0000000f), INFINITY];
        let results = [
            4610661241675116657u64,
            4636737291354636288u64,
            2197470602079456986u64,
            9218868437227405312u64,
        ];

        for i in 0..values.len() {
            let bits = f64::to_bits(sqrt(values[i]));
            assert_eq!(results[i], bits);
        }
    }
}