mezzaluna_type_registry/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
#![warn(clippy::all)]
#![warn(clippy::pedantic)]
#![warn(clippy::cargo)]
#![allow(clippy::manual_let_else)]
#![allow(unknown_lints)]
#![warn(missing_docs)]
#![warn(missing_debug_implementations)]
#![warn(missing_copy_implementations)]
#![warn(rust_2018_idioms)]
#![warn(rust_2021_compatibility)]
#![warn(trivial_casts, trivial_numeric_casts)]
#![warn(unused_qualifications)]
#![warn(variant_size_differences)]
#![forbid(unsafe_code)]
// Enable feature callouts in generated documentation:
// https://doc.rust-lang.org/beta/unstable-book/language-features/doc-cfg.html
//
// This approach is borrowed from tokio.
#![cfg_attr(docsrs, feature(doc_cfg))]
#![cfg_attr(docsrs, feature(doc_alias))]
//! A registry for "type spec" values that uses types as keys.
//!
//! This data structure is used for associating data type metadata with a Rust
//! type which can be used to ensure the lifetime of the associated metadata.
//!
//! The registry resembles an append-only [`HashMap`].
//!
//! The registry stores values behind a [`Box`] pointer to ensure pointers to
//! the interior of the spec, like [`CString`](std::ffi::CString) fields, are
//! not invalidated as the underlying storage reallocates.
//!
//! # Example
//!
//! ```
//! use mezzaluna_type_registry::Registry;
//!
//! let mut reg: Registry<&'static str> = Registry::with_capacity(10);
//! reg.insert::<i32>(Box::new("Numeric"));
//! reg.insert::<Vec<u8>>(Box::new("String"));
//!
//! assert_eq!(reg.get::<i32>(), Some(&"Numeric"));
//! assert_eq!(reg.get::<Vec<u8>>(), Some(&"String"));
//! assert_eq!(reg.get::<f64>(), None);
//! ```
//!
//! # Motivating use case: `mrb_data_type`
//!
//! In the mruby C API, custom data types define a `mrb_data_type` struct which
//! contains the custom data type's module name and free function. The C API
//! requires that this struct live at least as long as the `mrb_state`.
//! Typically, the `mrb_data_type` is `static`.
//!
//! ```c
//! static const struct mrb_data_type mrb_time_type = { "Time", mrb_free };
//! ```
// Ensure code blocks in `README.md` compile
#[cfg(doctest)]
#[doc = include_str!("../README.md")]
mod readme {}
use std::any::{self, Any, TypeId};
use std::collections::hash_map::{HashMap, RandomState, Values};
use std::collections::TryReserveError;
use std::fmt;
use std::hash::BuildHasher;
use std::iter::FusedIterator;
/// An iterator of all type specs stored in the [`Registry`].
///
/// See the [`type_specs`] method for more details.
///
/// [`type_specs`]: Registry::type_specs
#[derive(Debug, Clone)]
pub struct TypeSpecs<'a, T>(Values<'a, TypeId, Box<T>>);
impl<T> ExactSizeIterator for TypeSpecs<'_, T> {}
impl<T> FusedIterator for TypeSpecs<'_, T> {}
impl<'a, T> Iterator for TypeSpecs<'a, T> {
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
let value = self.0.next()?;
Some(value)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.0.size_hint()
}
fn count(self) -> usize {
self.0.count()
}
}
/// A registry for "type spec" values that uses types as keys.
///
/// This data structure is used for associating data type metadata with a Rust
/// type which can be used to ensure the lifetime of the associated metadata.
///
/// The registry resembles an append-only [`HashMap`].
///
/// The registry stores values behind a [`Box`] pointer to ensure pointers to
/// the interior of the spec, like [`CString`](std::ffi::CString) fields, are
/// not invalidated as the underlying storage reallocates.
///
/// # Example
///
/// ```
/// use mezzaluna_type_registry::Registry;
///
/// let mut reg: Registry<&'static str> = Registry::with_capacity(10);
/// reg.insert::<i32>(Box::new("Numeric"));
/// reg.insert::<Vec<u8>>(Box::new("String"));
///
/// assert_eq!(reg.get::<i32>(), Some(&"Numeric"));
/// assert_eq!(reg.get::<Vec<u8>>(), Some(&"String"));
/// assert_eq!(reg.get::<f64>(), None);
/// ```
pub struct Registry<T, S = RandomState>(HashMap<TypeId, Box<T>, S>);
impl<T, S> Default for Registry<T, S>
where
S: Default,
{
fn default() -> Self {
Self(HashMap::default())
}
}
impl<T, S> fmt::Debug for Registry<T, S>
where
T: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_map().entries(self.0.iter()).finish()
}
}
impl<T, S> PartialEq for Registry<T, S>
where
T: PartialEq,
S: BuildHasher,
{
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
impl<T, S> Eq for Registry<T, S>
where
T: Eq,
S: BuildHasher,
{
}
impl<T> Registry<T, RandomState> {
/// Construct a new, empty registry.
///
/// The registry is initially created with a capacity of 0, so it will not
/// allocate until it is first inserted into.
///
/// # Examples
///
/// ```
/// use mezzaluna_type_registry::Registry;
///
/// let mut reg: Registry<&'static str> = Registry::new();
/// ```
#[must_use]
pub fn new() -> Self {
Self(HashMap::new())
}
/// Construct a new registry with at least the specified capacity.
///
/// # Examples
///
/// ```
/// use mezzaluna_type_registry::Registry;
///
/// let mut reg: Registry<&'static str> = Registry::with_capacity(10);
/// ```
#[must_use]
pub fn with_capacity(capacity: usize) -> Self {
Self(HashMap::with_capacity(capacity))
}
}
impl<T, S> Registry<T, S> {
/// Construct a new registry with the given `hash_builder`.
///
/// The created registry has the default initial capacity.
///
/// Warning: `hash_builder` is normally randomly generated, and is designed
/// to allow registries to be resistant to attacks that cause many collisions
/// and very poor performance. Setting it manually using this function can
/// expose a DoS attack vector.
///
/// The `hash_builder` passed should implement the [`BuildHasher`] trait for
/// the registry to be useful, see its documentation for details.
///
/// # Examples
///
/// ```
/// use std::collections::hash_map::RandomState;
/// use mezzaluna_type_registry::Registry;
///
/// let s = RandomState::new();
/// let mut reg = Registry::with_hasher(s);
/// reg.insert::<i32>(Box::new("Numeric"));
/// ```
#[must_use]
pub fn with_hasher(hash_builder: S) -> Self {
Self(HashMap::with_hasher(hash_builder))
}
/// Construct a new registry with at least the specified capacity, using
/// `hasher` to hash the types.
///
/// The registry will be able to hold at least `capacity` elements without
/// reallocating. This method is allowed to allocate for more elements than
/// `capacity`. If `capacity` is 0, the registry will not allocate.
///
/// Warning: `hash_builder` is normally randomly generated, and is designed
/// to allow registries to be resistant to attacks that cause many collisions
/// and very poor performance. Setting it manually using this function can
/// expose a DoS attack vector.
///
/// The `hash_builder` passed should implement the [`BuildHasher`] trait for
/// the registry to be useful, see its documentation for details.
///
/// # Examples
///
/// ```
/// use std::collections::hash_map::RandomState;
/// use mezzaluna_type_registry::Registry;
///
/// let s = RandomState::new();
/// let mut reg = Registry::with_capacity_and_hasher(10, s);
/// reg.insert::<i32>(Box::new("Numeric"));
/// ```
#[must_use]
pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> Self {
Self(HashMap::with_capacity_and_hasher(capacity, hash_builder))
}
/// Returns the number of type specs the registry can hold without
/// reallocating.
///
/// This number is a lower bound; the registry might be able to hold more,
/// but is guaranteed to be able to hold at least this many.
///
/// # Examples
///
/// ```
/// use mezzaluna_type_registry::Registry;
///
/// let reg: Registry<&'static str> = Registry::with_capacity(100);
/// assert!(reg.capacity() >= 100);
/// ```
#[must_use]
pub fn capacity(&self) -> usize {
self.0.capacity()
}
/// An iterator of all type specs stored in the registry in arbitrary order.
/// The iterator element type is `&'a T`.
///
/// # Examples
///
/// ```
/// use mezzaluna_type_registry::Registry;
///
/// let mut reg: Registry<&'static str> = Registry::with_capacity(10);
/// reg.insert::<i32>(Box::new("Numeric"));
/// reg.insert::<Vec<u8>>(Box::new("String"));
///
/// for spec in reg.type_specs() {
/// println!("{spec}");
/// }
/// ```
#[must_use]
pub fn type_specs(&self) -> TypeSpecs<'_, T> {
TypeSpecs(self.0.values())
}
/// Returns the number of type specs in the registry.
///
/// # Examples
///
/// ```
/// use mezzaluna_type_registry::Registry;
///
/// let mut reg: Registry<&'static str> = Registry::with_capacity(10);
/// assert_eq!(reg.len(), 0);
/// reg.insert::<i32>(Box::new("Numeric"));
/// assert_eq!(reg.len(), 1);
/// ```
#[must_use]
pub fn len(&self) -> usize {
self.0.len()
}
/// Returns `true` if the registry does not contain any type specs.
///
/// # Examples
///
/// ```
/// use mezzaluna_type_registry::Registry;
///
/// let mut reg: Registry<&'static str> = Registry::with_capacity(10);
/// assert!(reg.is_empty());
/// reg.insert::<i32>(Box::new("Numeric"));
/// assert!(!reg.is_empty());
/// ```
#[must_use]
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Returns a reference to the registry's [`BuildHasher`].
///
/// # Examples
///
/// ```
/// use std::collections::hash_map::RandomState;
/// use mezzaluna_type_registry::Registry;
///
/// let s = RandomState::new();
/// let reg: Registry<&'static str> = Registry::with_hasher(s);
/// let hasher: &RandomState = reg.hasher();
/// ```
#[must_use]
pub fn hasher(&self) -> &S {
self.0.hasher()
}
}
impl<T, S> Registry<T, S>
where
T: fmt::Debug,
S: BuildHasher,
{
/// Returns true if the registry contains a type spec for the specified
/// type.
///
/// # Examples
///
/// ```
/// use mezzaluna_type_registry::Registry;
///
/// let mut reg: Registry<&'static str> = Registry::with_capacity(10);
/// reg.insert::<i32>(Box::new("Numeric"));
/// assert_eq!(reg.contains::<i32>(), true);
/// assert_eq!(reg.contains::<Vec<u8>>(), false);
/// ```
#[must_use]
pub fn contains<K>(&self) -> bool
where
K: Any,
{
let key = TypeId::of::<K>();
self.0.contains_key(&key)
}
/// Inserts a type-type spec pair into the registry.
///
/// This operation will only succeed if `K` has never been inserted into the
/// registry.
///
/// # Panics
///
/// If `insert` has previously been called with type `K`, this function will
/// panic. The registry is append-only and does not allow mutations.
///
/// # Examples
///
/// ```
/// use mezzaluna_type_registry::Registry;
///
/// let mut reg: Registry<&'static str> = Registry::with_capacity(10);
/// reg.insert::<i32>(Box::new("Numeric"));
/// assert_eq!(reg.is_empty(), false);
/// ```
pub fn insert<K>(&mut self, spec: Box<T>)
where
K: Any,
{
let key = TypeId::of::<K>();
if let Some(old_spec) = self.0.insert(key, spec) {
panic!(
"Attempted duplicate insert of {}. Registry is append-only. Previous spec: {:?}",
any::type_name::<K>(),
old_spec
);
}
}
/// Returns a reference to the type spec corresponding to the type key.
///
/// If the type `K` has not been registered, [`None`] is returned.
///
/// # Examples
///
/// ```
/// use mezzaluna_type_registry::Registry;
///
/// let mut reg: Registry<&'static str> = Registry::with_capacity(10);
/// reg.insert::<i32>(Box::new("Numeric"));
/// assert_eq!(reg.get::<i32>(), Some(&"Numeric"));
/// assert_eq!(reg.get::<Vec<u8>>(), None);
/// ```
#[must_use]
pub fn get<K>(&self) -> Option<&T>
where
K: Any,
{
let key = TypeId::of::<K>();
let value = self.0.get(&key)?;
Some(value)
}
/// Reserves capacity for at least `additional` more elements to be inserted
/// in the registry. The collection may reserve more space to speculatively
/// avoid frequent reallocations. After calling `reserve`, capacity will be
/// greater than or equal to `self.len() + additional`. Does nothing if
/// capacity is already sufficient.
///
/// # Panics
///
/// Panics if the new allocation size overflows [`usize`].
///
/// # Examples
///
/// ```
/// use mezzaluna_type_registry::Registry;
///
/// let mut reg: Registry<&'static str> = Registry::new();
/// reg.reserve(10);
/// assert!(reg.capacity() >= 10);
/// ```
pub fn reserve(&mut self, additional: usize) {
self.0.reserve(additional);
}
/// Tries to reserve capacity for at least `additional` more elements to be
/// inserted in the registry. The collection may reserve more space to
/// speculatively avoid frequent reallocations. After calling `try_reserve`,
/// capacity will be greater than or equal to `self.len() + additional` if
/// it returns `Ok(())`. Does nothing if capacity is already sufficient.
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an
/// error is returned.
///
/// # Examples
///
/// ```
/// use mezzaluna_type_registry::Registry;
///
/// let mut reg: Registry<&'static str> = Registry::new();
/// reg.try_reserve(10).expect("cannot OOM the doctest harness");
/// assert!(reg.capacity() >= 10);
/// ```
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
self.0.try_reserve(additional)
}
/// Shrinks the capacity of the registry as much as possible. It will drop
/// down as much as possible while maintaining the internal rules and
/// possibly leaving some space in accordance with the resize policy.
///
/// # Examples
///
/// ```
/// use mezzaluna_type_registry::Registry;
///
/// let mut reg: Registry<&'static str> = Registry::with_capacity(100);
/// reg.insert::<i32>(Box::new("Numeric"));
/// reg.insert::<Vec<u8>>(Box::new("String"));
/// assert!(reg.capacity() >= 100);
/// reg.shrink_to_fit();
/// assert!(reg.capacity() >= 2);
/// ```
pub fn shrink_to_fit(&mut self) {
self.0.shrink_to_fit();
}
/// Shrinks the capacity of the registry with a lower limit. It will drop
/// down no lower than the supplied limit while maintaining the internal
/// rules and possibly leaving some space in accordance with the resize
/// policy.
///
/// If the current capacity is less than the lower limit, this is a no-op.
///
/// # Examples
///
/// ```
/// use mezzaluna_type_registry::Registry;
///
/// let mut reg: Registry<&'static str> = Registry::with_capacity(100);
/// reg.insert::<i32>(Box::new("Numeric"));
/// reg.insert::<Vec<u8>>(Box::new("String"));
/// assert!(reg.capacity() >= 100);
/// reg.shrink_to(10);
/// assert!(reg.capacity() >= 10);
/// reg.shrink_to(0);
/// assert!(reg.capacity() >= 2);
/// ```
pub fn shrink_to(&mut self, min_capacity: usize) {
self.0.shrink_to(min_capacity);
}
}
#[cfg(test)]
mod tests {
use super::*;
#[derive(Debug, Clone, PartialEq, Eq)]
struct Item {
name: &'static str,
}
#[test]
fn test_contains_existing_type() {
let mut registry = Registry::new();
registry.insert::<i32>(Box::new(Item { name: "Integer" }));
assert!(registry.contains::<i32>());
}
#[test]
fn test_contains_non_existing_type() {
let registry = Registry::<Item>::new();
assert!(!registry.contains::<String>());
}
#[test]
fn test_contains_after_register() {
let mut registry = Registry::new();
assert!(!registry.contains::<i32>());
registry.insert::<i32>(Box::new(Item { name: "Integer" }));
assert!(registry.contains::<i32>());
}
#[test]
fn test_get_existing_type() {
let mut registry = Registry::new();
let item = Item { name: "Integer" };
registry.insert::<i32>(Box::new(item.clone()));
assert_eq!(registry.get::<i32>(), Some(&item));
}
#[test]
fn test_get_non_existing_type() {
let registry = Registry::<Item>::new();
assert_eq!(registry.get::<String>(), None);
}
#[test]
#[should_panic = "Attempted duplicate insert of i32. Registry is append-only. Previous spec: \"Numeric\""]
fn test_registry_panics_on_duplicate_insert() {
let mut reg = Registry::new();
reg.insert::<i32>(Box::new("Numeric"));
reg.insert::<i32>(Box::new("Integer"));
}
#[test]
fn test_typespecs_iterator_empty() {
let registry = Registry::<Item>::new();
let type_specs: Vec<_> = registry.type_specs().collect();
assert_eq!(type_specs.len(), 0);
}
#[test]
fn test_typespecs_iterator_single_item() {
let mut registry = Registry::new();
registry.insert::<i32>(Box::new(Item { name: "Integer" }));
let type_specs: Vec<_> = registry.type_specs().collect();
assert_eq!(type_specs.len(), 1);
assert!(type_specs.contains(&&Item { name: "Integer" }));
}
#[test]
fn test_typespecs_iterator_multiple_items() {
let mut registry = Registry::new();
registry.insert::<i32>(Box::new(Item { name: "Integer" }));
registry.insert::<String>(Box::new(Item { name: "String" }));
registry.insert::<f64>(Box::new(Item { name: "Float" }));
let type_specs: Vec<_> = registry.type_specs().collect();
assert_eq!(type_specs.len(), 3);
assert!(type_specs.contains(&&Item { name: "Integer" }));
assert!(type_specs.contains(&&Item { name: "String" }));
assert!(type_specs.contains(&&Item { name: "Float" }));
}
#[test]
fn test_typespecs_iterator_exact_size() {
let mut registry = Registry::new();
registry.insert::<i32>(Box::new(Item { name: "Integer" }));
registry.insert::<String>(Box::new(Item { name: "String" }));
registry.insert::<f64>(Box::new(Item { name: "Float" }));
let mut iter = registry.type_specs();
// Check the length of the iterator matches the expected count
assert_eq!(iter.len(), 3);
// Test the size_hint() method
let size_hint = iter.size_hint();
// The lower bound of the size hint should be 3
assert_eq!(size_hint.0, 3);
// The upper bound of the size hint should be Some(3)
assert_eq!(size_hint.1, Some(3));
// Call next() to advance the iterator
assert!(iter.next().is_some());
// Check the length of the iterator matches the expected count
assert_eq!(iter.len(), 2);
// Test the size_hint() method
let size_hint = iter.size_hint();
// The lower bound of the size hint should be 2
assert_eq!(size_hint.0, 2);
// The upper bound of the size hint should be Some(2)
assert_eq!(size_hint.1, Some(2));
// Advance the iterator using count()
let count = iter.by_ref().count();
// Ensure the count matches the remaining items
assert_eq!(count, 2);
// The length of the iterator should be 0 after exhaustion
assert_eq!(iter.len(), 0);
// After exhausting the iterator, it should return None
assert_eq!(iter.next(), None);
// The length of the iterator should be 0 after exhaustion
assert_eq!(iter.len(), 0);
// Test the size_hint() method
let size_hint = iter.size_hint();
// The lower bound of the size hint should be 0
assert_eq!(size_hint.0, 0);
// The upper bound of the size hint should be Some(0)
assert_eq!(size_hint.1, Some(0));
}
#[test]
fn test_registry_is_empty() {
let registry = Registry::<Item>::new();
assert!(registry.is_empty());
let mut registry = Registry::new();
registry.insert::<i32>(Box::new(Item { name: "Integer" }));
assert!(!registry.is_empty());
}
#[test]
fn test_registry_len() {
let registry = Registry::<Item>::new();
assert_eq!(registry.len(), 0);
let mut registry = Registry::new();
registry.insert::<i32>(Box::new(Item { name: "Integer" }));
assert_eq!(registry.len(), 1);
registry.insert::<String>(Box::new(Item { name: "String" }));
assert_eq!(registry.len(), 2);
}
#[test]
fn test_typespecs_debug_output_non_empty() {
let registry = Registry::<Item>::new();
let type_specs = registry.type_specs();
let debug_output = format!("{type_specs:?}");
assert!(!debug_output.is_empty());
}
#[test]
fn test_registry_debug_output_non_empty() {
let registry = Registry::<Item>::new();
let debug_output = format!("{registry:?}");
assert!(!debug_output.is_empty());
let mut registry = Registry::new();
registry.insert::<i32>(Box::new(Item { name: "Integer" }));
let debug_output = format!("{registry:?}");
assert!(!debug_output.is_empty());
}
#[test]
fn test_typespecs_debug_output_all_items() {
let mut registry = Registry::new();
registry.insert::<i32>(Box::new(Item { name: "Integer" }));
registry.insert::<String>(Box::new(Item { name: "String" }));
registry.insert::<f64>(Box::new(Item { name: "Float" }));
let type_specs = registry.type_specs();
let debug_output = format!("{type_specs:?}");
assert!(debug_output.contains("Integer"));
assert!(debug_output.contains("String"));
assert!(debug_output.contains("Float"));
}
#[test]
fn test_registry_debug_output_all_items() {
let mut registry = Registry::new();
registry.insert::<i32>(Box::new(Item { name: "Integer" }));
registry.insert::<String>(Box::new(Item { name: "String" }));
registry.insert::<f64>(Box::new(Item { name: "Float" }));
let debug_output = format!("{registry:?}");
assert!(debug_output.contains("Integer"));
assert!(debug_output.contains("String"));
assert!(debug_output.contains("Float"));
}
#[test]
fn test_registry_api() {
let mut reg: Registry<&'static str> = Registry::new();
// Test len
assert_eq!(reg.len(), 0);
assert!(reg.is_empty());
// Test capacity and reserve
assert_eq!(reg.capacity(), 0);
reg.reserve(5);
assert!(reg.capacity() >= 5);
reg.try_reserve(10).unwrap();
assert!(reg.capacity() >= 10);
// Test len
assert_eq!(reg.len(), 0);
assert!(reg.is_empty());
// Test insert and get
reg.insert::<i32>(Box::new("Numeric"));
reg.insert::<Vec<u8>>(Box::new("String"));
assert_eq!(reg.get::<i32>(), Some(&"Numeric"));
assert_eq!(reg.get::<Vec<u8>>(), Some(&"String"));
assert_eq!(reg.get::<f32>(), None);
// Test contains
assert!(reg.contains::<i32>());
assert!(reg.contains::<Vec<u8>>());
assert!(!reg.contains::<f32>());
// Test len
assert_eq!(reg.len(), 2);
assert!(!reg.is_empty());
}
}