mezzaluna_type_registry/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
#![warn(clippy::all)]
#![warn(clippy::pedantic)]
#![warn(clippy::cargo)]
#![allow(clippy::manual_let_else)]
#![allow(unknown_lints)]
#![warn(missing_docs)]
#![warn(missing_debug_implementations)]
#![warn(missing_copy_implementations)]
#![warn(rust_2018_idioms)]
#![warn(rust_2021_compatibility)]
#![warn(trivial_casts, trivial_numeric_casts)]
#![warn(unused_qualifications)]
#![warn(variant_size_differences)]
#![forbid(unsafe_code)]
// Enable feature callouts in generated documentation:
// https://doc.rust-lang.org/beta/unstable-book/language-features/doc-cfg.html
//
// This approach is borrowed from tokio.
#![cfg_attr(docsrs, feature(doc_cfg))]
#![cfg_attr(docsrs, feature(doc_alias))]

//! A registry for "type spec" values that uses types as keys.
//!
//! This data structure is used for associating data type metadata with a Rust
//! type which can be used to ensure the lifetime of the associated metadata.
//!
//! The registry resembles an append-only [`HashMap`].
//!
//! The registry stores values behind a [`Box`] pointer to ensure pointers to
//! the interior of the spec, like [`CString`](std::ffi::CString) fields, are
//! not invalidated as the underlying storage reallocates.
//!
//! # Example
//!
//! ```
//! use mezzaluna_type_registry::Registry;
//!
//! let mut reg: Registry<&'static str> = Registry::with_capacity(10);
//! reg.insert::<i32>(Box::new("Numeric"));
//! reg.insert::<Vec<u8>>(Box::new("String"));
//!
//! assert_eq!(reg.get::<i32>(), Some(&"Numeric"));
//! assert_eq!(reg.get::<Vec<u8>>(), Some(&"String"));
//! assert_eq!(reg.get::<f64>(), None);
//! ```
//!
//! # Motivating use case: `mrb_data_type`
//!
//! In the mruby C API, custom data types define a `mrb_data_type` struct which
//! contains the custom data type's module name and free function. The C API
//! requires that this struct live at least as long as the `mrb_state`.
//! Typically, the `mrb_data_type` is `static`.
//!
//! ```c
//! static const struct mrb_data_type mrb_time_type = { "Time", mrb_free };
//! ```

// Ensure code blocks in `README.md` compile
#[cfg(doctest)]
#[doc = include_str!("../README.md")]
mod readme {}

use std::any::{self, Any, TypeId};
use std::collections::hash_map::{HashMap, RandomState, Values};
use std::collections::TryReserveError;
use std::fmt;
use std::hash::BuildHasher;
use std::iter::FusedIterator;

/// An iterator of all type specs stored in the [`Registry`].
///
/// See the [`type_specs`] method for more details.
///
/// [`type_specs`]: Registry::type_specs
#[derive(Debug, Clone)]
pub struct TypeSpecs<'a, T>(Values<'a, TypeId, Box<T>>);

impl<T> ExactSizeIterator for TypeSpecs<'_, T> {}

impl<T> FusedIterator for TypeSpecs<'_, T> {}

impl<'a, T> Iterator for TypeSpecs<'a, T> {
    type Item = &'a T;

    fn next(&mut self) -> Option<Self::Item> {
        let value = self.0.next()?;
        Some(value)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }

    fn count(self) -> usize {
        self.0.count()
    }
}

/// A registry for "type spec" values that uses types as keys.
///
/// This data structure is used for associating data type metadata with a Rust
/// type which can be used to ensure the lifetime of the associated metadata.
///
/// The registry resembles an append-only [`HashMap`].
///
/// The registry stores values behind a [`Box`] pointer to ensure pointers to
/// the interior of the spec, like [`CString`](std::ffi::CString) fields, are
/// not invalidated as the underlying storage reallocates.
///
/// # Example
///
/// ```
/// use mezzaluna_type_registry::Registry;
///
/// let mut reg: Registry<&'static str> = Registry::with_capacity(10);
/// reg.insert::<i32>(Box::new("Numeric"));
/// reg.insert::<Vec<u8>>(Box::new("String"));
///
/// assert_eq!(reg.get::<i32>(), Some(&"Numeric"));
/// assert_eq!(reg.get::<Vec<u8>>(), Some(&"String"));
/// assert_eq!(reg.get::<f64>(), None);
/// ```
pub struct Registry<T, S = RandomState>(HashMap<TypeId, Box<T>, S>);

impl<T, S> Default for Registry<T, S>
where
    S: Default,
{
    fn default() -> Self {
        Self(HashMap::default())
    }
}

impl<T, S> fmt::Debug for Registry<T, S>
where
    T: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_map().entries(self.0.iter()).finish()
    }
}

impl<T, S> PartialEq for Registry<T, S>
where
    T: PartialEq,
    S: BuildHasher,
{
    fn eq(&self, other: &Self) -> bool {
        self.0 == other.0
    }
}

impl<T, S> Eq for Registry<T, S>
where
    T: Eq,
    S: BuildHasher,
{
}

impl<T> Registry<T, RandomState> {
    /// Construct a new, empty registry.
    ///
    /// The registry is initially created with a capacity of 0, so it will not
    /// allocate until it is first inserted into.
    ///
    /// # Examples
    ///
    /// ```
    /// use mezzaluna_type_registry::Registry;
    ///
    /// let mut reg: Registry<&'static str> = Registry::new();
    /// ```
    #[must_use]
    pub fn new() -> Self {
        Self(HashMap::new())
    }

    /// Construct a new registry with at least the specified capacity.
    ///
    /// # Examples
    ///
    /// ```
    /// use mezzaluna_type_registry::Registry;
    ///
    /// let mut reg: Registry<&'static str> = Registry::with_capacity(10);
    /// ```
    #[must_use]
    pub fn with_capacity(capacity: usize) -> Self {
        Self(HashMap::with_capacity(capacity))
    }
}

impl<T, S> Registry<T, S> {
    /// Construct a new registry with the given `hash_builder`.
    ///
    /// The created registry has the default initial capacity.
    ///
    /// Warning: `hash_builder` is normally randomly generated, and is designed
    /// to allow registries to be resistant to attacks that cause many collisions
    /// and very poor performance. Setting it manually using this function can
    /// expose a DoS attack vector.
    ///
    /// The `hash_builder` passed should implement the [`BuildHasher`] trait for
    /// the registry to be useful, see its documentation for details.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::hash_map::RandomState;
    /// use mezzaluna_type_registry::Registry;
    ///
    /// let s = RandomState::new();
    /// let mut reg = Registry::with_hasher(s);
    /// reg.insert::<i32>(Box::new("Numeric"));
    /// ```
    #[must_use]
    pub fn with_hasher(hash_builder: S) -> Self {
        Self(HashMap::with_hasher(hash_builder))
    }

    /// Construct a new registry with at least the specified capacity, using
    /// `hasher` to hash the types.
    ///
    /// The registry will be able to hold at least `capacity` elements without
    /// reallocating. This method is allowed to allocate for more elements than
    /// `capacity`. If `capacity` is 0, the registry will not allocate.
    ///
    /// Warning: `hash_builder` is normally randomly generated, and is designed
    /// to allow registries to be resistant to attacks that cause many collisions
    /// and very poor performance. Setting it manually using this function can
    /// expose a DoS attack vector.
    ///
    /// The `hash_builder` passed should implement the [`BuildHasher`] trait for
    /// the registry to be useful, see its documentation for details.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::hash_map::RandomState;
    /// use mezzaluna_type_registry::Registry;
    ///
    /// let s = RandomState::new();
    /// let mut reg = Registry::with_capacity_and_hasher(10, s);
    /// reg.insert::<i32>(Box::new("Numeric"));
    /// ```
    #[must_use]
    pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> Self {
        Self(HashMap::with_capacity_and_hasher(capacity, hash_builder))
    }

    /// Returns the number of type specs the registry can hold without
    /// reallocating.
    ///
    /// This number is a lower bound; the registry might be able to hold more,
    /// but is guaranteed to be able to hold at least this many.
    ///
    /// # Examples
    ///
    /// ```
    /// use mezzaluna_type_registry::Registry;
    ///
    /// let reg: Registry<&'static str> = Registry::with_capacity(100);
    /// assert!(reg.capacity() >= 100);
    /// ```
    #[must_use]
    pub fn capacity(&self) -> usize {
        self.0.capacity()
    }

    /// An iterator of all type specs stored in the registry in arbitrary order.
    /// The iterator element type is `&'a T`.
    ///
    /// # Examples
    ///
    /// ```
    /// use mezzaluna_type_registry::Registry;
    ///
    /// let mut reg: Registry<&'static str> = Registry::with_capacity(10);
    /// reg.insert::<i32>(Box::new("Numeric"));
    /// reg.insert::<Vec<u8>>(Box::new("String"));
    ///
    /// for spec in reg.type_specs() {
    ///     println!("{spec}");
    /// }
    /// ```
    #[must_use]
    pub fn type_specs(&self) -> TypeSpecs<'_, T> {
        TypeSpecs(self.0.values())
    }

    /// Returns the number of type specs in the registry.
    ///
    /// # Examples
    ///
    /// ```
    /// use mezzaluna_type_registry::Registry;
    ///
    /// let mut reg: Registry<&'static str> = Registry::with_capacity(10);
    /// assert_eq!(reg.len(), 0);
    /// reg.insert::<i32>(Box::new("Numeric"));
    /// assert_eq!(reg.len(), 1);
    /// ```
    #[must_use]
    pub fn len(&self) -> usize {
        self.0.len()
    }

    /// Returns `true` if the registry does not contain any type specs.
    ///
    /// # Examples
    ///
    /// ```
    /// use mezzaluna_type_registry::Registry;
    ///
    /// let mut reg: Registry<&'static str> = Registry::with_capacity(10);
    /// assert!(reg.is_empty());
    /// reg.insert::<i32>(Box::new("Numeric"));
    /// assert!(!reg.is_empty());
    /// ```
    #[must_use]
    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    /// Returns a reference to the registry's [`BuildHasher`].
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::hash_map::RandomState;
    /// use mezzaluna_type_registry::Registry;
    ///
    /// let s = RandomState::new();
    /// let reg: Registry<&'static str> = Registry::with_hasher(s);
    /// let hasher: &RandomState = reg.hasher();
    /// ```
    #[must_use]
    pub fn hasher(&self) -> &S {
        self.0.hasher()
    }
}

impl<T, S> Registry<T, S>
where
    T: fmt::Debug,
    S: BuildHasher,
{
    /// Returns true if the registry contains a type spec for the specified
    /// type.
    ///
    /// # Examples
    ///
    /// ```
    /// use mezzaluna_type_registry::Registry;
    ///
    /// let mut reg: Registry<&'static str> = Registry::with_capacity(10);
    /// reg.insert::<i32>(Box::new("Numeric"));
    /// assert_eq!(reg.contains::<i32>(), true);
    /// assert_eq!(reg.contains::<Vec<u8>>(), false);
    /// ```
    #[must_use]
    pub fn contains<K>(&self) -> bool
    where
        K: Any,
    {
        let key = TypeId::of::<K>();
        self.0.contains_key(&key)
    }

    /// Inserts a type-type spec pair into the registry.
    ///
    /// This operation will only succeed if `K` has never been inserted into the
    /// registry.
    ///
    /// # Panics
    ///
    /// If `insert` has previously been called with type `K`, this function will
    /// panic. The registry is append-only and does not allow mutations.
    ///
    /// # Examples
    ///
    /// ```
    /// use mezzaluna_type_registry::Registry;
    ///
    /// let mut reg: Registry<&'static str> = Registry::with_capacity(10);
    /// reg.insert::<i32>(Box::new("Numeric"));
    /// assert_eq!(reg.is_empty(), false);
    /// ```
    pub fn insert<K>(&mut self, spec: Box<T>)
    where
        K: Any,
    {
        let key = TypeId::of::<K>();
        if let Some(old_spec) = self.0.insert(key, spec) {
            panic!(
                "Attempted duplicate insert of {}. Registry is append-only. Previous spec: {:?}",
                any::type_name::<K>(),
                old_spec
            );
        }
    }

    /// Returns a reference to the type spec corresponding to the type key.
    ///
    /// If the type `K` has not been registered, [`None`] is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use mezzaluna_type_registry::Registry;
    ///
    /// let mut reg: Registry<&'static str> = Registry::with_capacity(10);
    /// reg.insert::<i32>(Box::new("Numeric"));
    /// assert_eq!(reg.get::<i32>(), Some(&"Numeric"));
    /// assert_eq!(reg.get::<Vec<u8>>(), None);
    /// ```
    #[must_use]
    pub fn get<K>(&self) -> Option<&T>
    where
        K: Any,
    {
        let key = TypeId::of::<K>();
        let value = self.0.get(&key)?;
        Some(value)
    }

    /// Reserves capacity for at least `additional` more elements to be inserted
    /// in the registry. The collection may reserve more space to speculatively
    /// avoid frequent reallocations. After calling `reserve`, capacity will be
    /// greater than or equal to `self.len() + additional`. Does nothing if
    /// capacity is already sufficient.
    ///
    /// # Panics
    ///
    /// Panics if the new allocation size overflows [`usize`].
    ///
    /// # Examples
    ///
    /// ```
    /// use mezzaluna_type_registry::Registry;
    ///
    /// let mut reg: Registry<&'static str> = Registry::new();
    /// reg.reserve(10);
    /// assert!(reg.capacity() >= 10);
    /// ```
    pub fn reserve(&mut self, additional: usize) {
        self.0.reserve(additional);
    }

    /// Tries to reserve capacity for at least `additional` more elements to be
    /// inserted in the registry. The collection may reserve more space to
    /// speculatively avoid frequent reallocations. After calling `try_reserve`,
    /// capacity will be greater than or equal to `self.len() + additional` if
    /// it returns `Ok(())`. Does nothing if capacity is already sufficient.
    ///
    /// # Errors
    ///
    /// If the capacity overflows, or the allocator reports a failure, then an
    /// error is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use mezzaluna_type_registry::Registry;
    ///
    /// let mut reg: Registry<&'static str> = Registry::new();
    /// reg.try_reserve(10).expect("cannot OOM the doctest harness");
    /// assert!(reg.capacity() >= 10);
    /// ```
    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
        self.0.try_reserve(additional)
    }

    /// Shrinks the capacity of the registry as much as possible. It will drop
    /// down as much as possible while maintaining the internal rules and
    /// possibly leaving some space in accordance with the resize policy.
    ///
    /// # Examples
    ///
    /// ```
    /// use mezzaluna_type_registry::Registry;
    ///
    /// let mut reg: Registry<&'static str> = Registry::with_capacity(100);
    /// reg.insert::<i32>(Box::new("Numeric"));
    /// reg.insert::<Vec<u8>>(Box::new("String"));
    /// assert!(reg.capacity() >= 100);
    /// reg.shrink_to_fit();
    /// assert!(reg.capacity() >= 2);
    /// ```
    pub fn shrink_to_fit(&mut self) {
        self.0.shrink_to_fit();
    }

    /// Shrinks the capacity of the registry with a lower limit. It will drop
    /// down no lower than the supplied limit while maintaining the internal
    /// rules and possibly leaving some space in accordance with the resize
    /// policy.
    ///
    /// If the current capacity is less than the lower limit, this is a no-op.
    ///
    /// # Examples
    ///
    /// ```
    /// use mezzaluna_type_registry::Registry;
    ///
    /// let mut reg: Registry<&'static str> = Registry::with_capacity(100);
    /// reg.insert::<i32>(Box::new("Numeric"));
    /// reg.insert::<Vec<u8>>(Box::new("String"));
    /// assert!(reg.capacity() >= 100);
    /// reg.shrink_to(10);
    /// assert!(reg.capacity() >= 10);
    /// reg.shrink_to(0);
    /// assert!(reg.capacity() >= 2);
    /// ```
    pub fn shrink_to(&mut self, min_capacity: usize) {
        self.0.shrink_to(min_capacity);
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[derive(Debug, Clone, PartialEq, Eq)]
    struct Item {
        name: &'static str,
    }

    #[test]
    fn test_contains_existing_type() {
        let mut registry = Registry::new();
        registry.insert::<i32>(Box::new(Item { name: "Integer" }));

        assert!(registry.contains::<i32>());
    }

    #[test]
    fn test_contains_non_existing_type() {
        let registry = Registry::<Item>::new();

        assert!(!registry.contains::<String>());
    }

    #[test]
    fn test_contains_after_register() {
        let mut registry = Registry::new();

        assert!(!registry.contains::<i32>());

        registry.insert::<i32>(Box::new(Item { name: "Integer" }));

        assert!(registry.contains::<i32>());
    }

    #[test]
    fn test_get_existing_type() {
        let mut registry = Registry::new();
        let item = Item { name: "Integer" };
        registry.insert::<i32>(Box::new(item.clone()));

        assert_eq!(registry.get::<i32>(), Some(&item));
    }

    #[test]
    fn test_get_non_existing_type() {
        let registry = Registry::<Item>::new();

        assert_eq!(registry.get::<String>(), None);
    }

    #[test]
    #[should_panic = "Attempted duplicate insert of i32. Registry is append-only. Previous spec: \"Numeric\""]
    fn test_registry_panics_on_duplicate_insert() {
        let mut reg = Registry::new();
        reg.insert::<i32>(Box::new("Numeric"));
        reg.insert::<i32>(Box::new("Integer"));
    }

    #[test]
    fn test_typespecs_iterator_empty() {
        let registry = Registry::<Item>::new();
        let type_specs: Vec<_> = registry.type_specs().collect();
        assert_eq!(type_specs.len(), 0);
    }

    #[test]
    fn test_typespecs_iterator_single_item() {
        let mut registry = Registry::new();
        registry.insert::<i32>(Box::new(Item { name: "Integer" }));
        let type_specs: Vec<_> = registry.type_specs().collect();
        assert_eq!(type_specs.len(), 1);
        assert!(type_specs.contains(&&Item { name: "Integer" }));
    }

    #[test]
    fn test_typespecs_iterator_multiple_items() {
        let mut registry = Registry::new();
        registry.insert::<i32>(Box::new(Item { name: "Integer" }));
        registry.insert::<String>(Box::new(Item { name: "String" }));
        registry.insert::<f64>(Box::new(Item { name: "Float" }));

        let type_specs: Vec<_> = registry.type_specs().collect();
        assert_eq!(type_specs.len(), 3);
        assert!(type_specs.contains(&&Item { name: "Integer" }));
        assert!(type_specs.contains(&&Item { name: "String" }));
        assert!(type_specs.contains(&&Item { name: "Float" }));
    }

    #[test]
    fn test_typespecs_iterator_exact_size() {
        let mut registry = Registry::new();
        registry.insert::<i32>(Box::new(Item { name: "Integer" }));
        registry.insert::<String>(Box::new(Item { name: "String" }));
        registry.insert::<f64>(Box::new(Item { name: "Float" }));

        let mut iter = registry.type_specs();

        // Check the length of the iterator matches the expected count
        assert_eq!(iter.len(), 3);

        // Test the size_hint() method
        let size_hint = iter.size_hint();

        // The lower bound of the size hint should be 3
        assert_eq!(size_hint.0, 3);

        // The upper bound of the size hint should be Some(3)
        assert_eq!(size_hint.1, Some(3));

        // Call next() to advance the iterator
        assert!(iter.next().is_some());

        // Check the length of the iterator matches the expected count
        assert_eq!(iter.len(), 2);

        // Test the size_hint() method
        let size_hint = iter.size_hint();

        // The lower bound of the size hint should be 2
        assert_eq!(size_hint.0, 2);

        // The upper bound of the size hint should be Some(2)
        assert_eq!(size_hint.1, Some(2));

        // Advance the iterator using count()
        let count = iter.by_ref().count();

        // Ensure the count matches the remaining items
        assert_eq!(count, 2);

        // The length of the iterator should be 0 after exhaustion
        assert_eq!(iter.len(), 0);

        // After exhausting the iterator, it should return None
        assert_eq!(iter.next(), None);

        // The length of the iterator should be 0 after exhaustion
        assert_eq!(iter.len(), 0);

        // Test the size_hint() method
        let size_hint = iter.size_hint();

        // The lower bound of the size hint should be 0
        assert_eq!(size_hint.0, 0);

        // The upper bound of the size hint should be Some(0)
        assert_eq!(size_hint.1, Some(0));
    }

    #[test]
    fn test_registry_is_empty() {
        let registry = Registry::<Item>::new();
        assert!(registry.is_empty());

        let mut registry = Registry::new();
        registry.insert::<i32>(Box::new(Item { name: "Integer" }));
        assert!(!registry.is_empty());
    }

    #[test]
    fn test_registry_len() {
        let registry = Registry::<Item>::new();
        assert_eq!(registry.len(), 0);

        let mut registry = Registry::new();
        registry.insert::<i32>(Box::new(Item { name: "Integer" }));
        assert_eq!(registry.len(), 1);

        registry.insert::<String>(Box::new(Item { name: "String" }));
        assert_eq!(registry.len(), 2);
    }

    #[test]
    fn test_typespecs_debug_output_non_empty() {
        let registry = Registry::<Item>::new();
        let type_specs = registry.type_specs();
        let debug_output = format!("{type_specs:?}");
        assert!(!debug_output.is_empty());
    }

    #[test]
    fn test_registry_debug_output_non_empty() {
        let registry = Registry::<Item>::new();
        let debug_output = format!("{registry:?}");
        assert!(!debug_output.is_empty());

        let mut registry = Registry::new();
        registry.insert::<i32>(Box::new(Item { name: "Integer" }));
        let debug_output = format!("{registry:?}");
        assert!(!debug_output.is_empty());
    }

    #[test]
    fn test_typespecs_debug_output_all_items() {
        let mut registry = Registry::new();
        registry.insert::<i32>(Box::new(Item { name: "Integer" }));
        registry.insert::<String>(Box::new(Item { name: "String" }));
        registry.insert::<f64>(Box::new(Item { name: "Float" }));

        let type_specs = registry.type_specs();
        let debug_output = format!("{type_specs:?}");

        assert!(debug_output.contains("Integer"));
        assert!(debug_output.contains("String"));
        assert!(debug_output.contains("Float"));
    }

    #[test]
    fn test_registry_debug_output_all_items() {
        let mut registry = Registry::new();
        registry.insert::<i32>(Box::new(Item { name: "Integer" }));
        registry.insert::<String>(Box::new(Item { name: "String" }));
        registry.insert::<f64>(Box::new(Item { name: "Float" }));

        let debug_output = format!("{registry:?}");

        assert!(debug_output.contains("Integer"));
        assert!(debug_output.contains("String"));
        assert!(debug_output.contains("Float"));
    }

    #[test]
    fn test_registry_api() {
        let mut reg: Registry<&'static str> = Registry::new();

        // Test len
        assert_eq!(reg.len(), 0);
        assert!(reg.is_empty());

        // Test capacity and reserve
        assert_eq!(reg.capacity(), 0);
        reg.reserve(5);
        assert!(reg.capacity() >= 5);
        reg.try_reserve(10).unwrap();
        assert!(reg.capacity() >= 10);

        // Test len
        assert_eq!(reg.len(), 0);
        assert!(reg.is_empty());

        // Test insert and get
        reg.insert::<i32>(Box::new("Numeric"));
        reg.insert::<Vec<u8>>(Box::new("String"));

        assert_eq!(reg.get::<i32>(), Some(&"Numeric"));
        assert_eq!(reg.get::<Vec<u8>>(), Some(&"String"));
        assert_eq!(reg.get::<f32>(), None);

        // Test contains
        assert!(reg.contains::<i32>());
        assert!(reg.contains::<Vec<u8>>());
        assert!(!reg.contains::<f32>());

        // Test len
        assert_eq!(reg.len(), 2);
        assert!(!reg.is_empty());
    }
}