proc_macro2/
lib.rs

1//! [![github]](https://github.com/dtolnay/proc-macro2) [![crates-io]](https://crates.io/crates/proc-macro2) [![docs-rs]](crate)
2//!
3//! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
4//! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
5//! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs
6//!
7//! <br>
8//!
9//! A wrapper around the procedural macro API of the compiler's [`proc_macro`]
10//! crate. This library serves two purposes:
11//!
12//! [`proc_macro`]: https://doc.rust-lang.org/proc_macro/
13//!
14//! - **Bring proc-macro-like functionality to other contexts like build.rs and
15//!   main.rs.** Types from `proc_macro` are entirely specific to procedural
16//!   macros and cannot ever exist in code outside of a procedural macro.
17//!   Meanwhile `proc_macro2` types may exist anywhere including non-macro code.
18//!   By developing foundational libraries like [syn] and [quote] against
19//!   `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem
20//!   becomes easily applicable to many other use cases and we avoid
21//!   reimplementing non-macro equivalents of those libraries.
22//!
23//! - **Make procedural macros unit testable.** As a consequence of being
24//!   specific to procedural macros, nothing that uses `proc_macro` can be
25//!   executed from a unit test. In order for helper libraries or components of
26//!   a macro to be testable in isolation, they must be implemented using
27//!   `proc_macro2`.
28//!
29//! [syn]: https://github.com/dtolnay/syn
30//! [quote]: https://github.com/dtolnay/quote
31//!
32//! # Usage
33//!
34//! The skeleton of a typical procedural macro typically looks like this:
35//!
36//! ```
37//! extern crate proc_macro;
38//!
39//! # const IGNORE: &str = stringify! {
40//! #[proc_macro_derive(MyDerive)]
41//! # };
42//! # #[cfg(wrap_proc_macro)]
43//! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
44//!     let input = proc_macro2::TokenStream::from(input);
45//!
46//!     let output: proc_macro2::TokenStream = {
47//!         /* transform input */
48//!         # input
49//!     };
50//!
51//!     proc_macro::TokenStream::from(output)
52//! }
53//! ```
54//!
55//! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to
56//! propagate parse errors correctly back to the compiler when parsing fails.
57//!
58//! [`parse_macro_input!`]: https://docs.rs/syn/2.0/syn/macro.parse_macro_input.html
59//!
60//! # Unstable features
61//!
62//! The default feature set of proc-macro2 tracks the most recent stable
63//! compiler API. Functionality in `proc_macro` that is not yet stable is not
64//! exposed by proc-macro2 by default.
65//!
66//! To opt into the additional APIs available in the most recent nightly
67//! compiler, the `procmacro2_semver_exempt` config flag must be passed to
68//! rustc. We will polyfill those nightly-only APIs back to Rust 1.56.0. As
69//! these are unstable APIs that track the nightly compiler, minor versions of
70//! proc-macro2 may make breaking changes to them at any time.
71//!
72//! ```sh
73//! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build
74//! ```
75//!
76//! Note that this must not only be done for your crate, but for any crate that
77//! depends on your crate. This infectious nature is intentional, as it serves
78//! as a reminder that you are outside of the normal semver guarantees.
79//!
80//! Semver exempt methods are marked as such in the proc-macro2 documentation.
81//!
82//! # Thread-Safety
83//!
84//! Most types in this crate are `!Sync` because the underlying compiler
85//! types make use of thread-local memory, meaning they cannot be accessed from
86//! a different thread.
87
88// Proc-macro2 types in rustdoc of other crates get linked to here.
89#![doc(html_root_url = "https://docs.rs/proc-macro2/1.0.93")]
90#![cfg_attr(any(proc_macro_span, super_unstable), feature(proc_macro_span))]
91#![cfg_attr(super_unstable, feature(proc_macro_def_site))]
92#![cfg_attr(docsrs, feature(doc_cfg))]
93#![deny(unsafe_op_in_unsafe_fn)]
94#![allow(
95    clippy::cast_lossless,
96    clippy::cast_possible_truncation,
97    clippy::checked_conversions,
98    clippy::doc_markdown,
99    clippy::incompatible_msrv,
100    clippy::items_after_statements,
101    clippy::iter_without_into_iter,
102    clippy::let_underscore_untyped,
103    clippy::manual_assert,
104    clippy::manual_range_contains,
105    clippy::missing_panics_doc,
106    clippy::missing_safety_doc,
107    clippy::must_use_candidate,
108    clippy::needless_doctest_main,
109    clippy::needless_lifetimes,
110    clippy::new_without_default,
111    clippy::return_self_not_must_use,
112    clippy::shadow_unrelated,
113    clippy::trivially_copy_pass_by_ref,
114    clippy::unnecessary_wraps,
115    clippy::unused_self,
116    clippy::used_underscore_binding,
117    clippy::vec_init_then_push
118)]
119
120#[cfg(all(procmacro2_semver_exempt, wrap_proc_macro, not(super_unstable)))]
121compile_error! {"\
122    Something is not right. If you've tried to turn on \
123    procmacro2_semver_exempt, you need to ensure that it \
124    is turned on for the compilation of the proc-macro2 \
125    build script as well.
126"}
127
128#[cfg(all(
129    procmacro2_nightly_testing,
130    feature = "proc-macro",
131    not(proc_macro_span)
132))]
133compile_error! {"\
134    Build script probe failed to compile.
135"}
136
137extern crate alloc;
138
139#[cfg(feature = "proc-macro")]
140extern crate proc_macro;
141
142mod marker;
143mod parse;
144mod rcvec;
145
146#[cfg(wrap_proc_macro)]
147mod detection;
148
149// Public for proc_macro2::fallback::force() and unforce(), but those are quite
150// a niche use case so we omit it from rustdoc.
151#[doc(hidden)]
152pub mod fallback;
153
154pub mod extra;
155
156#[cfg(not(wrap_proc_macro))]
157use crate::fallback as imp;
158#[path = "wrapper.rs"]
159#[cfg(wrap_proc_macro)]
160mod imp;
161
162#[cfg(span_locations)]
163mod location;
164
165use crate::extra::DelimSpan;
166use crate::marker::{ProcMacroAutoTraits, MARKER};
167use core::cmp::Ordering;
168use core::fmt::{self, Debug, Display};
169use core::hash::{Hash, Hasher};
170#[cfg(span_locations)]
171use core::ops::Range;
172use core::ops::RangeBounds;
173use core::str::FromStr;
174use std::error::Error;
175use std::ffi::CStr;
176#[cfg(procmacro2_semver_exempt)]
177use std::path::PathBuf;
178
179#[cfg(span_locations)]
180#[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
181pub use crate::location::LineColumn;
182
183/// An abstract stream of tokens, or more concretely a sequence of token trees.
184///
185/// This type provides interfaces for iterating over token trees and for
186/// collecting token trees into one stream.
187///
188/// Token stream is both the input and output of `#[proc_macro]`,
189/// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions.
190#[derive(Clone)]
191pub struct TokenStream {
192    inner: imp::TokenStream,
193    _marker: ProcMacroAutoTraits,
194}
195
196/// Error returned from `TokenStream::from_str`.
197pub struct LexError {
198    inner: imp::LexError,
199    _marker: ProcMacroAutoTraits,
200}
201
202impl TokenStream {
203    fn _new(inner: imp::TokenStream) -> Self {
204        TokenStream {
205            inner,
206            _marker: MARKER,
207        }
208    }
209
210    fn _new_fallback(inner: fallback::TokenStream) -> Self {
211        TokenStream {
212            inner: imp::TokenStream::from(inner),
213            _marker: MARKER,
214        }
215    }
216
217    /// Returns an empty `TokenStream` containing no token trees.
218    pub fn new() -> Self {
219        TokenStream::_new(imp::TokenStream::new())
220    }
221
222    /// Checks if this `TokenStream` is empty.
223    pub fn is_empty(&self) -> bool {
224        self.inner.is_empty()
225    }
226}
227
228/// `TokenStream::default()` returns an empty stream,
229/// i.e. this is equivalent with `TokenStream::new()`.
230impl Default for TokenStream {
231    fn default() -> Self {
232        TokenStream::new()
233    }
234}
235
236/// Attempts to break the string into tokens and parse those tokens into a token
237/// stream.
238///
239/// May fail for a number of reasons, for example, if the string contains
240/// unbalanced delimiters or characters not existing in the language.
241///
242/// NOTE: Some errors may cause panics instead of returning `LexError`. We
243/// reserve the right to change these errors into `LexError`s later.
244impl FromStr for TokenStream {
245    type Err = LexError;
246
247    fn from_str(src: &str) -> Result<TokenStream, LexError> {
248        match imp::TokenStream::from_str_checked(src) {
249            Ok(tokens) => Ok(TokenStream::_new(tokens)),
250            Err(lex) => Err(LexError {
251                inner: lex,
252                _marker: MARKER,
253            }),
254        }
255    }
256}
257
258#[cfg(feature = "proc-macro")]
259#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
260impl From<proc_macro::TokenStream> for TokenStream {
261    fn from(inner: proc_macro::TokenStream) -> Self {
262        TokenStream::_new(imp::TokenStream::from(inner))
263    }
264}
265
266#[cfg(feature = "proc-macro")]
267#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
268impl From<TokenStream> for proc_macro::TokenStream {
269    fn from(inner: TokenStream) -> Self {
270        proc_macro::TokenStream::from(inner.inner)
271    }
272}
273
274impl From<TokenTree> for TokenStream {
275    fn from(token: TokenTree) -> Self {
276        TokenStream::_new(imp::TokenStream::from(token))
277    }
278}
279
280impl Extend<TokenTree> for TokenStream {
281    fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I) {
282        self.inner.extend(streams);
283    }
284}
285
286impl Extend<TokenStream> for TokenStream {
287    fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
288        self.inner
289            .extend(streams.into_iter().map(|stream| stream.inner));
290    }
291}
292
293/// Collects a number of token trees into a single stream.
294impl FromIterator<TokenTree> for TokenStream {
295    fn from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self {
296        TokenStream::_new(streams.into_iter().collect())
297    }
298}
299impl FromIterator<TokenStream> for TokenStream {
300    fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
301        TokenStream::_new(streams.into_iter().map(|i| i.inner).collect())
302    }
303}
304
305/// Prints the token stream as a string that is supposed to be losslessly
306/// convertible back into the same token stream (modulo spans), except for
307/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
308/// numeric literals.
309impl Display for TokenStream {
310    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
311        Display::fmt(&self.inner, f)
312    }
313}
314
315/// Prints token in a form convenient for debugging.
316impl Debug for TokenStream {
317    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
318        Debug::fmt(&self.inner, f)
319    }
320}
321
322impl LexError {
323    pub fn span(&self) -> Span {
324        Span::_new(self.inner.span())
325    }
326}
327
328impl Debug for LexError {
329    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
330        Debug::fmt(&self.inner, f)
331    }
332}
333
334impl Display for LexError {
335    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
336        Display::fmt(&self.inner, f)
337    }
338}
339
340impl Error for LexError {}
341
342/// The source file of a given `Span`.
343///
344/// This type is semver exempt and not exposed by default.
345#[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
346#[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
347#[derive(Clone, PartialEq, Eq)]
348pub struct SourceFile {
349    inner: imp::SourceFile,
350    _marker: ProcMacroAutoTraits,
351}
352
353#[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
354impl SourceFile {
355    fn _new(inner: imp::SourceFile) -> Self {
356        SourceFile {
357            inner,
358            _marker: MARKER,
359        }
360    }
361
362    /// Get the path to this source file.
363    ///
364    /// ### Note
365    ///
366    /// If the code span associated with this `SourceFile` was generated by an
367    /// external macro, this may not be an actual path on the filesystem. Use
368    /// [`is_real`] to check.
369    ///
370    /// Also note that even if `is_real` returns `true`, if
371    /// `--remap-path-prefix` was passed on the command line, the path as given
372    /// may not actually be valid.
373    ///
374    /// [`is_real`]: #method.is_real
375    pub fn path(&self) -> PathBuf {
376        self.inner.path()
377    }
378
379    /// Returns `true` if this source file is a real source file, and not
380    /// generated by an external macro's expansion.
381    pub fn is_real(&self) -> bool {
382        self.inner.is_real()
383    }
384}
385
386#[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
387impl Debug for SourceFile {
388    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
389        Debug::fmt(&self.inner, f)
390    }
391}
392
393/// A region of source code, along with macro expansion information.
394#[derive(Copy, Clone)]
395pub struct Span {
396    inner: imp::Span,
397    _marker: ProcMacroAutoTraits,
398}
399
400impl Span {
401    fn _new(inner: imp::Span) -> Self {
402        Span {
403            inner,
404            _marker: MARKER,
405        }
406    }
407
408    fn _new_fallback(inner: fallback::Span) -> Self {
409        Span {
410            inner: imp::Span::from(inner),
411            _marker: MARKER,
412        }
413    }
414
415    /// The span of the invocation of the current procedural macro.
416    ///
417    /// Identifiers created with this span will be resolved as if they were
418    /// written directly at the macro call location (call-site hygiene) and
419    /// other code at the macro call site will be able to refer to them as well.
420    pub fn call_site() -> Self {
421        Span::_new(imp::Span::call_site())
422    }
423
424    /// The span located at the invocation of the procedural macro, but with
425    /// local variables, labels, and `$crate` resolved at the definition site
426    /// of the macro. This is the same hygiene behavior as `macro_rules`.
427    pub fn mixed_site() -> Self {
428        Span::_new(imp::Span::mixed_site())
429    }
430
431    /// A span that resolves at the macro definition site.
432    ///
433    /// This method is semver exempt and not exposed by default.
434    #[cfg(procmacro2_semver_exempt)]
435    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
436    pub fn def_site() -> Self {
437        Span::_new(imp::Span::def_site())
438    }
439
440    /// Creates a new span with the same line/column information as `self` but
441    /// that resolves symbols as though it were at `other`.
442    pub fn resolved_at(&self, other: Span) -> Span {
443        Span::_new(self.inner.resolved_at(other.inner))
444    }
445
446    /// Creates a new span with the same name resolution behavior as `self` but
447    /// with the line/column information of `other`.
448    pub fn located_at(&self, other: Span) -> Span {
449        Span::_new(self.inner.located_at(other.inner))
450    }
451
452    /// Convert `proc_macro2::Span` to `proc_macro::Span`.
453    ///
454    /// This method is available when building with a nightly compiler, or when
455    /// building with rustc 1.29+ *without* semver exempt features.
456    ///
457    /// # Panics
458    ///
459    /// Panics if called from outside of a procedural macro. Unlike
460    /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within
461    /// the context of a procedural macro invocation.
462    #[cfg(wrap_proc_macro)]
463    pub fn unwrap(self) -> proc_macro::Span {
464        self.inner.unwrap()
465    }
466
467    // Soft deprecated. Please use Span::unwrap.
468    #[cfg(wrap_proc_macro)]
469    #[doc(hidden)]
470    pub fn unstable(self) -> proc_macro::Span {
471        self.unwrap()
472    }
473
474    /// The original source file into which this span points.
475    ///
476    /// This method is semver exempt and not exposed by default.
477    #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
478    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
479    pub fn source_file(&self) -> SourceFile {
480        SourceFile::_new(self.inner.source_file())
481    }
482
483    /// Returns the span's byte position range in the source file.
484    ///
485    /// This method requires the `"span-locations"` feature to be enabled.
486    ///
487    /// When executing in a procedural macro context, the returned range is only
488    /// accurate if compiled with a nightly toolchain. The stable toolchain does
489    /// not have this information available. When executing outside of a
490    /// procedural macro, such as main.rs or build.rs, the byte range is always
491    /// accurate regardless of toolchain.
492    #[cfg(span_locations)]
493    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
494    pub fn byte_range(&self) -> Range<usize> {
495        self.inner.byte_range()
496    }
497
498    /// Get the starting line/column in the source file for this span.
499    ///
500    /// This method requires the `"span-locations"` feature to be enabled.
501    ///
502    /// When executing in a procedural macro context, the returned line/column
503    /// are only meaningful if compiled with a nightly toolchain. The stable
504    /// toolchain does not have this information available. When executing
505    /// outside of a procedural macro, such as main.rs or build.rs, the
506    /// line/column are always meaningful regardless of toolchain.
507    #[cfg(span_locations)]
508    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
509    pub fn start(&self) -> LineColumn {
510        self.inner.start()
511    }
512
513    /// Get the ending line/column in the source file for this span.
514    ///
515    /// This method requires the `"span-locations"` feature to be enabled.
516    ///
517    /// When executing in a procedural macro context, the returned line/column
518    /// are only meaningful if compiled with a nightly toolchain. The stable
519    /// toolchain does not have this information available. When executing
520    /// outside of a procedural macro, such as main.rs or build.rs, the
521    /// line/column are always meaningful regardless of toolchain.
522    #[cfg(span_locations)]
523    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
524    pub fn end(&self) -> LineColumn {
525        self.inner.end()
526    }
527
528    /// Create a new span encompassing `self` and `other`.
529    ///
530    /// Returns `None` if `self` and `other` are from different files.
531    ///
532    /// Warning: the underlying [`proc_macro::Span::join`] method is
533    /// nightly-only. When called from within a procedural macro not using a
534    /// nightly compiler, this method will always return `None`.
535    ///
536    /// [`proc_macro::Span::join`]: https://doc.rust-lang.org/proc_macro/struct.Span.html#method.join
537    pub fn join(&self, other: Span) -> Option<Span> {
538        self.inner.join(other.inner).map(Span::_new)
539    }
540
541    /// Compares two spans to see if they're equal.
542    ///
543    /// This method is semver exempt and not exposed by default.
544    #[cfg(procmacro2_semver_exempt)]
545    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
546    pub fn eq(&self, other: &Span) -> bool {
547        self.inner.eq(&other.inner)
548    }
549
550    /// Returns the source text behind a span. This preserves the original
551    /// source code, including spaces and comments. It only returns a result if
552    /// the span corresponds to real source code.
553    ///
554    /// Note: The observable result of a macro should only rely on the tokens
555    /// and not on this source text. The result of this function is a best
556    /// effort to be used for diagnostics only.
557    pub fn source_text(&self) -> Option<String> {
558        self.inner.source_text()
559    }
560}
561
562/// Prints a span in a form convenient for debugging.
563impl Debug for Span {
564    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
565        Debug::fmt(&self.inner, f)
566    }
567}
568
569/// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`).
570#[derive(Clone)]
571pub enum TokenTree {
572    /// A token stream surrounded by bracket delimiters.
573    Group(Group),
574    /// An identifier.
575    Ident(Ident),
576    /// A single punctuation character (`+`, `,`, `$`, etc.).
577    Punct(Punct),
578    /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
579    Literal(Literal),
580}
581
582impl TokenTree {
583    /// Returns the span of this tree, delegating to the `span` method of
584    /// the contained token or a delimited stream.
585    pub fn span(&self) -> Span {
586        match self {
587            TokenTree::Group(t) => t.span(),
588            TokenTree::Ident(t) => t.span(),
589            TokenTree::Punct(t) => t.span(),
590            TokenTree::Literal(t) => t.span(),
591        }
592    }
593
594    /// Configures the span for *only this token*.
595    ///
596    /// Note that if this token is a `Group` then this method will not configure
597    /// the span of each of the internal tokens, this will simply delegate to
598    /// the `set_span` method of each variant.
599    pub fn set_span(&mut self, span: Span) {
600        match self {
601            TokenTree::Group(t) => t.set_span(span),
602            TokenTree::Ident(t) => t.set_span(span),
603            TokenTree::Punct(t) => t.set_span(span),
604            TokenTree::Literal(t) => t.set_span(span),
605        }
606    }
607}
608
609impl From<Group> for TokenTree {
610    fn from(g: Group) -> Self {
611        TokenTree::Group(g)
612    }
613}
614
615impl From<Ident> for TokenTree {
616    fn from(g: Ident) -> Self {
617        TokenTree::Ident(g)
618    }
619}
620
621impl From<Punct> for TokenTree {
622    fn from(g: Punct) -> Self {
623        TokenTree::Punct(g)
624    }
625}
626
627impl From<Literal> for TokenTree {
628    fn from(g: Literal) -> Self {
629        TokenTree::Literal(g)
630    }
631}
632
633/// Prints the token tree as a string that is supposed to be losslessly
634/// convertible back into the same token tree (modulo spans), except for
635/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
636/// numeric literals.
637impl Display for TokenTree {
638    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
639        match self {
640            TokenTree::Group(t) => Display::fmt(t, f),
641            TokenTree::Ident(t) => Display::fmt(t, f),
642            TokenTree::Punct(t) => Display::fmt(t, f),
643            TokenTree::Literal(t) => Display::fmt(t, f),
644        }
645    }
646}
647
648/// Prints token tree in a form convenient for debugging.
649impl Debug for TokenTree {
650    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
651        // Each of these has the name in the struct type in the derived debug,
652        // so don't bother with an extra layer of indirection
653        match self {
654            TokenTree::Group(t) => Debug::fmt(t, f),
655            TokenTree::Ident(t) => {
656                let mut debug = f.debug_struct("Ident");
657                debug.field("sym", &format_args!("{}", t));
658                imp::debug_span_field_if_nontrivial(&mut debug, t.span().inner);
659                debug.finish()
660            }
661            TokenTree::Punct(t) => Debug::fmt(t, f),
662            TokenTree::Literal(t) => Debug::fmt(t, f),
663        }
664    }
665}
666
667/// A delimited token stream.
668///
669/// A `Group` internally contains a `TokenStream` which is surrounded by
670/// `Delimiter`s.
671#[derive(Clone)]
672pub struct Group {
673    inner: imp::Group,
674}
675
676/// Describes how a sequence of token trees is delimited.
677#[derive(Copy, Clone, Debug, Eq, PartialEq)]
678pub enum Delimiter {
679    /// `( ... )`
680    Parenthesis,
681    /// `{ ... }`
682    Brace,
683    /// `[ ... ]`
684    Bracket,
685    /// `∅ ... ∅`
686    ///
687    /// An invisible delimiter, that may, for example, appear around tokens
688    /// coming from a "macro variable" `$var`. It is important to preserve
689    /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`.
690    /// Invisible delimiters may not survive roundtrip of a token stream through
691    /// a string.
692    ///
693    /// <div class="warning">
694    ///
695    /// Note: rustc currently can ignore the grouping of tokens delimited by `None` in the output
696    /// of a proc_macro. Only `None`-delimited groups created by a macro_rules macro in the input
697    /// of a proc_macro macro are preserved, and only in very specific circumstances.
698    /// Any `None`-delimited groups (re)created by a proc_macro will therefore not preserve
699    /// operator priorities as indicated above. The other `Delimiter` variants should be used
700    /// instead in this context. This is a rustc bug. For details, see
701    /// [rust-lang/rust#67062](https://github.com/rust-lang/rust/issues/67062).
702    ///
703    /// </div>
704    None,
705}
706
707impl Group {
708    fn _new(inner: imp::Group) -> Self {
709        Group { inner }
710    }
711
712    fn _new_fallback(inner: fallback::Group) -> Self {
713        Group {
714            inner: imp::Group::from(inner),
715        }
716    }
717
718    /// Creates a new `Group` with the given delimiter and token stream.
719    ///
720    /// This constructor will set the span for this group to
721    /// `Span::call_site()`. To change the span you can use the `set_span`
722    /// method below.
723    pub fn new(delimiter: Delimiter, stream: TokenStream) -> Self {
724        Group {
725            inner: imp::Group::new(delimiter, stream.inner),
726        }
727    }
728
729    /// Returns the punctuation used as the delimiter for this group: a set of
730    /// parentheses, square brackets, or curly braces.
731    pub fn delimiter(&self) -> Delimiter {
732        self.inner.delimiter()
733    }
734
735    /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
736    ///
737    /// Note that the returned token stream does not include the delimiter
738    /// returned above.
739    pub fn stream(&self) -> TokenStream {
740        TokenStream::_new(self.inner.stream())
741    }
742
743    /// Returns the span for the delimiters of this token stream, spanning the
744    /// entire `Group`.
745    ///
746    /// ```text
747    /// pub fn span(&self) -> Span {
748    ///            ^^^^^^^
749    /// ```
750    pub fn span(&self) -> Span {
751        Span::_new(self.inner.span())
752    }
753
754    /// Returns the span pointing to the opening delimiter of this group.
755    ///
756    /// ```text
757    /// pub fn span_open(&self) -> Span {
758    ///                 ^
759    /// ```
760    pub fn span_open(&self) -> Span {
761        Span::_new(self.inner.span_open())
762    }
763
764    /// Returns the span pointing to the closing delimiter of this group.
765    ///
766    /// ```text
767    /// pub fn span_close(&self) -> Span {
768    ///                        ^
769    /// ```
770    pub fn span_close(&self) -> Span {
771        Span::_new(self.inner.span_close())
772    }
773
774    /// Returns an object that holds this group's `span_open()` and
775    /// `span_close()` together (in a more compact representation than holding
776    /// those 2 spans individually).
777    pub fn delim_span(&self) -> DelimSpan {
778        DelimSpan::new(&self.inner)
779    }
780
781    /// Configures the span for this `Group`'s delimiters, but not its internal
782    /// tokens.
783    ///
784    /// This method will **not** set the span of all the internal tokens spanned
785    /// by this group, but rather it will only set the span of the delimiter
786    /// tokens at the level of the `Group`.
787    pub fn set_span(&mut self, span: Span) {
788        self.inner.set_span(span.inner);
789    }
790}
791
792/// Prints the group as a string that should be losslessly convertible back
793/// into the same group (modulo spans), except for possibly `TokenTree::Group`s
794/// with `Delimiter::None` delimiters.
795impl Display for Group {
796    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
797        Display::fmt(&self.inner, formatter)
798    }
799}
800
801impl Debug for Group {
802    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
803        Debug::fmt(&self.inner, formatter)
804    }
805}
806
807/// A `Punct` is a single punctuation character like `+`, `-` or `#`.
808///
809/// Multicharacter operators like `+=` are represented as two instances of
810/// `Punct` with different forms of `Spacing` returned.
811#[derive(Clone)]
812pub struct Punct {
813    ch: char,
814    spacing: Spacing,
815    span: Span,
816}
817
818/// Whether a `Punct` is followed immediately by another `Punct` or followed by
819/// another token or whitespace.
820#[derive(Copy, Clone, Debug, Eq, PartialEq)]
821pub enum Spacing {
822    /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`.
823    Alone,
824    /// E.g. `+` is `Joint` in `+=` or `'` is `Joint` in `'#`.
825    ///
826    /// Additionally, single quote `'` can join with identifiers to form
827    /// lifetimes `'ident`.
828    Joint,
829}
830
831impl Punct {
832    /// Creates a new `Punct` from the given character and spacing.
833    ///
834    /// The `ch` argument must be a valid punctuation character permitted by the
835    /// language, otherwise the function will panic.
836    ///
837    /// The returned `Punct` will have the default span of `Span::call_site()`
838    /// which can be further configured with the `set_span` method below.
839    pub fn new(ch: char, spacing: Spacing) -> Self {
840        if let '!' | '#' | '$' | '%' | '&' | '\'' | '*' | '+' | ',' | '-' | '.' | '/' | ':' | ';'
841        | '<' | '=' | '>' | '?' | '@' | '^' | '|' | '~' = ch
842        {
843            Punct {
844                ch,
845                spacing,
846                span: Span::call_site(),
847            }
848        } else {
849            panic!("unsupported proc macro punctuation character {:?}", ch);
850        }
851    }
852
853    /// Returns the value of this punctuation character as `char`.
854    pub fn as_char(&self) -> char {
855        self.ch
856    }
857
858    /// Returns the spacing of this punctuation character, indicating whether
859    /// it's immediately followed by another `Punct` in the token stream, so
860    /// they can potentially be combined into a multicharacter operator
861    /// (`Joint`), or it's followed by some other token or whitespace (`Alone`)
862    /// so the operator has certainly ended.
863    pub fn spacing(&self) -> Spacing {
864        self.spacing
865    }
866
867    /// Returns the span for this punctuation character.
868    pub fn span(&self) -> Span {
869        self.span
870    }
871
872    /// Configure the span for this punctuation character.
873    pub fn set_span(&mut self, span: Span) {
874        self.span = span;
875    }
876}
877
878/// Prints the punctuation character as a string that should be losslessly
879/// convertible back into the same character.
880impl Display for Punct {
881    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
882        Display::fmt(&self.ch, f)
883    }
884}
885
886impl Debug for Punct {
887    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
888        let mut debug = fmt.debug_struct("Punct");
889        debug.field("char", &self.ch);
890        debug.field("spacing", &self.spacing);
891        imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner);
892        debug.finish()
893    }
894}
895
896/// A word of Rust code, which may be a keyword or legal variable name.
897///
898/// An identifier consists of at least one Unicode code point, the first of
899/// which has the XID_Start property and the rest of which have the XID_Continue
900/// property.
901///
902/// - The empty string is not an identifier. Use `Option<Ident>`.
903/// - A lifetime is not an identifier. Use `syn::Lifetime` instead.
904///
905/// An identifier constructed with `Ident::new` is permitted to be a Rust
906/// keyword, though parsing one through its [`Parse`] implementation rejects
907/// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the
908/// behaviour of `Ident::new`.
909///
910/// [`Parse`]: https://docs.rs/syn/2.0/syn/parse/trait.Parse.html
911///
912/// # Examples
913///
914/// A new ident can be created from a string using the `Ident::new` function.
915/// A span must be provided explicitly which governs the name resolution
916/// behavior of the resulting identifier.
917///
918/// ```
919/// use proc_macro2::{Ident, Span};
920///
921/// fn main() {
922///     let call_ident = Ident::new("calligraphy", Span::call_site());
923///
924///     println!("{}", call_ident);
925/// }
926/// ```
927///
928/// An ident can be interpolated into a token stream using the `quote!` macro.
929///
930/// ```
931/// use proc_macro2::{Ident, Span};
932/// use quote::quote;
933///
934/// fn main() {
935///     let ident = Ident::new("demo", Span::call_site());
936///
937///     // Create a variable binding whose name is this ident.
938///     let expanded = quote! { let #ident = 10; };
939///
940///     // Create a variable binding with a slightly different name.
941///     let temp_ident = Ident::new(&format!("new_{}", ident), Span::call_site());
942///     let expanded = quote! { let #temp_ident = 10; };
943/// }
944/// ```
945///
946/// A string representation of the ident is available through the `to_string()`
947/// method.
948///
949/// ```
950/// # use proc_macro2::{Ident, Span};
951/// #
952/// # let ident = Ident::new("another_identifier", Span::call_site());
953/// #
954/// // Examine the ident as a string.
955/// let ident_string = ident.to_string();
956/// if ident_string.len() > 60 {
957///     println!("Very long identifier: {}", ident_string)
958/// }
959/// ```
960#[derive(Clone)]
961pub struct Ident {
962    inner: imp::Ident,
963    _marker: ProcMacroAutoTraits,
964}
965
966impl Ident {
967    fn _new(inner: imp::Ident) -> Self {
968        Ident {
969            inner,
970            _marker: MARKER,
971        }
972    }
973
974    fn _new_fallback(inner: fallback::Ident) -> Self {
975        Ident {
976            inner: imp::Ident::from(inner),
977            _marker: MARKER,
978        }
979    }
980
981    /// Creates a new `Ident` with the given `string` as well as the specified
982    /// `span`.
983    ///
984    /// The `string` argument must be a valid identifier permitted by the
985    /// language, otherwise the function will panic.
986    ///
987    /// Note that `span`, currently in rustc, configures the hygiene information
988    /// for this identifier.
989    ///
990    /// As of this time `Span::call_site()` explicitly opts-in to "call-site"
991    /// hygiene meaning that identifiers created with this span will be resolved
992    /// as if they were written directly at the location of the macro call, and
993    /// other code at the macro call site will be able to refer to them as well.
994    ///
995    /// Later spans like `Span::def_site()` will allow to opt-in to
996    /// "definition-site" hygiene meaning that identifiers created with this
997    /// span will be resolved at the location of the macro definition and other
998    /// code at the macro call site will not be able to refer to them.
999    ///
1000    /// Due to the current importance of hygiene this constructor, unlike other
1001    /// tokens, requires a `Span` to be specified at construction.
1002    ///
1003    /// # Panics
1004    ///
1005    /// Panics if the input string is neither a keyword nor a legal variable
1006    /// name. If you are not sure whether the string contains an identifier and
1007    /// need to handle an error case, use
1008    /// <a href="https://docs.rs/syn/2.0/syn/fn.parse_str.html"><code
1009    ///   style="padding-right:0;">syn::parse_str</code></a><code
1010    ///   style="padding-left:0;">::&lt;Ident&gt;</code>
1011    /// rather than `Ident::new`.
1012    #[track_caller]
1013    pub fn new(string: &str, span: Span) -> Self {
1014        Ident::_new(imp::Ident::new_checked(string, span.inner))
1015    }
1016
1017    /// Same as `Ident::new`, but creates a raw identifier (`r#ident`). The
1018    /// `string` argument must be a valid identifier permitted by the language
1019    /// (including keywords, e.g. `fn`). Keywords which are usable in path
1020    /// segments (e.g. `self`, `super`) are not supported, and will cause a
1021    /// panic.
1022    #[track_caller]
1023    pub fn new_raw(string: &str, span: Span) -> Self {
1024        Ident::_new(imp::Ident::new_raw_checked(string, span.inner))
1025    }
1026
1027    /// Returns the span of this `Ident`.
1028    pub fn span(&self) -> Span {
1029        Span::_new(self.inner.span())
1030    }
1031
1032    /// Configures the span of this `Ident`, possibly changing its hygiene
1033    /// context.
1034    pub fn set_span(&mut self, span: Span) {
1035        self.inner.set_span(span.inner);
1036    }
1037}
1038
1039impl PartialEq for Ident {
1040    fn eq(&self, other: &Ident) -> bool {
1041        self.inner == other.inner
1042    }
1043}
1044
1045impl<T> PartialEq<T> for Ident
1046where
1047    T: ?Sized + AsRef<str>,
1048{
1049    fn eq(&self, other: &T) -> bool {
1050        self.inner == other
1051    }
1052}
1053
1054impl Eq for Ident {}
1055
1056impl PartialOrd for Ident {
1057    fn partial_cmp(&self, other: &Ident) -> Option<Ordering> {
1058        Some(self.cmp(other))
1059    }
1060}
1061
1062impl Ord for Ident {
1063    fn cmp(&self, other: &Ident) -> Ordering {
1064        self.to_string().cmp(&other.to_string())
1065    }
1066}
1067
1068impl Hash for Ident {
1069    fn hash<H: Hasher>(&self, hasher: &mut H) {
1070        self.to_string().hash(hasher);
1071    }
1072}
1073
1074/// Prints the identifier as a string that should be losslessly convertible back
1075/// into the same identifier.
1076impl Display for Ident {
1077    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1078        Display::fmt(&self.inner, f)
1079    }
1080}
1081
1082impl Debug for Ident {
1083    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1084        Debug::fmt(&self.inner, f)
1085    }
1086}
1087
1088/// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`),
1089/// byte character (`b'a'`), an integer or floating point number with or without
1090/// a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
1091///
1092/// Boolean literals like `true` and `false` do not belong here, they are
1093/// `Ident`s.
1094#[derive(Clone)]
1095pub struct Literal {
1096    inner: imp::Literal,
1097    _marker: ProcMacroAutoTraits,
1098}
1099
1100macro_rules! suffixed_int_literals {
1101    ($($name:ident => $kind:ident,)*) => ($(
1102        /// Creates a new suffixed integer literal with the specified value.
1103        ///
1104        /// This function will create an integer like `1u32` where the integer
1105        /// value specified is the first part of the token and the integral is
1106        /// also suffixed at the end. Literals created from negative numbers may
1107        /// not survive roundtrips through `TokenStream` or strings and may be
1108        /// broken into two tokens (`-` and positive literal).
1109        ///
1110        /// Literals created through this method have the `Span::call_site()`
1111        /// span by default, which can be configured with the `set_span` method
1112        /// below.
1113        pub fn $name(n: $kind) -> Literal {
1114            Literal::_new(imp::Literal::$name(n))
1115        }
1116    )*)
1117}
1118
1119macro_rules! unsuffixed_int_literals {
1120    ($($name:ident => $kind:ident,)*) => ($(
1121        /// Creates a new unsuffixed integer literal with the specified value.
1122        ///
1123        /// This function will create an integer like `1` where the integer
1124        /// value specified is the first part of the token. No suffix is
1125        /// specified on this token, meaning that invocations like
1126        /// `Literal::i8_unsuffixed(1)` are equivalent to
1127        /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers
1128        /// may not survive roundtrips through `TokenStream` or strings and may
1129        /// be broken into two tokens (`-` and positive literal).
1130        ///
1131        /// Literals created through this method have the `Span::call_site()`
1132        /// span by default, which can be configured with the `set_span` method
1133        /// below.
1134        pub fn $name(n: $kind) -> Literal {
1135            Literal::_new(imp::Literal::$name(n))
1136        }
1137    )*)
1138}
1139
1140impl Literal {
1141    fn _new(inner: imp::Literal) -> Self {
1142        Literal {
1143            inner,
1144            _marker: MARKER,
1145        }
1146    }
1147
1148    fn _new_fallback(inner: fallback::Literal) -> Self {
1149        Literal {
1150            inner: imp::Literal::from(inner),
1151            _marker: MARKER,
1152        }
1153    }
1154
1155    suffixed_int_literals! {
1156        u8_suffixed => u8,
1157        u16_suffixed => u16,
1158        u32_suffixed => u32,
1159        u64_suffixed => u64,
1160        u128_suffixed => u128,
1161        usize_suffixed => usize,
1162        i8_suffixed => i8,
1163        i16_suffixed => i16,
1164        i32_suffixed => i32,
1165        i64_suffixed => i64,
1166        i128_suffixed => i128,
1167        isize_suffixed => isize,
1168    }
1169
1170    unsuffixed_int_literals! {
1171        u8_unsuffixed => u8,
1172        u16_unsuffixed => u16,
1173        u32_unsuffixed => u32,
1174        u64_unsuffixed => u64,
1175        u128_unsuffixed => u128,
1176        usize_unsuffixed => usize,
1177        i8_unsuffixed => i8,
1178        i16_unsuffixed => i16,
1179        i32_unsuffixed => i32,
1180        i64_unsuffixed => i64,
1181        i128_unsuffixed => i128,
1182        isize_unsuffixed => isize,
1183    }
1184
1185    /// Creates a new unsuffixed floating-point literal.
1186    ///
1187    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1188    /// the float's value is emitted directly into the token but no suffix is
1189    /// used, so it may be inferred to be a `f64` later in the compiler.
1190    /// Literals created from negative numbers may not survive round-trips
1191    /// through `TokenStream` or strings and may be broken into two tokens (`-`
1192    /// and positive literal).
1193    ///
1194    /// # Panics
1195    ///
1196    /// This function requires that the specified float is finite, for example
1197    /// if it is infinity or NaN this function will panic.
1198    pub fn f64_unsuffixed(f: f64) -> Literal {
1199        assert!(f.is_finite());
1200        Literal::_new(imp::Literal::f64_unsuffixed(f))
1201    }
1202
1203    /// Creates a new suffixed floating-point literal.
1204    ///
1205    /// This constructor will create a literal like `1.0f64` where the value
1206    /// specified is the preceding part of the token and `f64` is the suffix of
1207    /// the token. This token will always be inferred to be an `f64` in the
1208    /// compiler. Literals created from negative numbers may not survive
1209    /// round-trips through `TokenStream` or strings and may be broken into two
1210    /// tokens (`-` and positive literal).
1211    ///
1212    /// # Panics
1213    ///
1214    /// This function requires that the specified float is finite, for example
1215    /// if it is infinity or NaN this function will panic.
1216    pub fn f64_suffixed(f: f64) -> Literal {
1217        assert!(f.is_finite());
1218        Literal::_new(imp::Literal::f64_suffixed(f))
1219    }
1220
1221    /// Creates a new unsuffixed floating-point literal.
1222    ///
1223    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1224    /// the float's value is emitted directly into the token but no suffix is
1225    /// used, so it may be inferred to be a `f64` later in the compiler.
1226    /// Literals created from negative numbers may not survive round-trips
1227    /// through `TokenStream` or strings and may be broken into two tokens (`-`
1228    /// and positive literal).
1229    ///
1230    /// # Panics
1231    ///
1232    /// This function requires that the specified float is finite, for example
1233    /// if it is infinity or NaN this function will panic.
1234    pub fn f32_unsuffixed(f: f32) -> Literal {
1235        assert!(f.is_finite());
1236        Literal::_new(imp::Literal::f32_unsuffixed(f))
1237    }
1238
1239    /// Creates a new suffixed floating-point literal.
1240    ///
1241    /// This constructor will create a literal like `1.0f32` where the value
1242    /// specified is the preceding part of the token and `f32` is the suffix of
1243    /// the token. This token will always be inferred to be an `f32` in the
1244    /// compiler. Literals created from negative numbers may not survive
1245    /// round-trips through `TokenStream` or strings and may be broken into two
1246    /// tokens (`-` and positive literal).
1247    ///
1248    /// # Panics
1249    ///
1250    /// This function requires that the specified float is finite, for example
1251    /// if it is infinity or NaN this function will panic.
1252    pub fn f32_suffixed(f: f32) -> Literal {
1253        assert!(f.is_finite());
1254        Literal::_new(imp::Literal::f32_suffixed(f))
1255    }
1256
1257    /// String literal.
1258    pub fn string(string: &str) -> Literal {
1259        Literal::_new(imp::Literal::string(string))
1260    }
1261
1262    /// Character literal.
1263    pub fn character(ch: char) -> Literal {
1264        Literal::_new(imp::Literal::character(ch))
1265    }
1266
1267    /// Byte character literal.
1268    pub fn byte_character(byte: u8) -> Literal {
1269        Literal::_new(imp::Literal::byte_character(byte))
1270    }
1271
1272    /// Byte string literal.
1273    pub fn byte_string(bytes: &[u8]) -> Literal {
1274        Literal::_new(imp::Literal::byte_string(bytes))
1275    }
1276
1277    /// C string literal.
1278    pub fn c_string(string: &CStr) -> Literal {
1279        Literal::_new(imp::Literal::c_string(string))
1280    }
1281
1282    /// Returns the span encompassing this literal.
1283    pub fn span(&self) -> Span {
1284        Span::_new(self.inner.span())
1285    }
1286
1287    /// Configures the span associated for this literal.
1288    pub fn set_span(&mut self, span: Span) {
1289        self.inner.set_span(span.inner);
1290    }
1291
1292    /// Returns a `Span` that is a subset of `self.span()` containing only
1293    /// the source bytes in range `range`. Returns `None` if the would-be
1294    /// trimmed span is outside the bounds of `self`.
1295    ///
1296    /// Warning: the underlying [`proc_macro::Literal::subspan`] method is
1297    /// nightly-only. When called from within a procedural macro not using a
1298    /// nightly compiler, this method will always return `None`.
1299    ///
1300    /// [`proc_macro::Literal::subspan`]: https://doc.rust-lang.org/proc_macro/struct.Literal.html#method.subspan
1301    pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
1302        self.inner.subspan(range).map(Span::_new)
1303    }
1304
1305    // Intended for the `quote!` macro to use when constructing a proc-macro2
1306    // token out of a macro_rules $:literal token, which is already known to be
1307    // a valid literal. This avoids reparsing/validating the literal's string
1308    // representation. This is not public API other than for quote.
1309    #[doc(hidden)]
1310    pub unsafe fn from_str_unchecked(repr: &str) -> Self {
1311        Literal::_new(unsafe { imp::Literal::from_str_unchecked(repr) })
1312    }
1313}
1314
1315impl FromStr for Literal {
1316    type Err = LexError;
1317
1318    fn from_str(repr: &str) -> Result<Self, LexError> {
1319        match imp::Literal::from_str_checked(repr) {
1320            Ok(lit) => Ok(Literal::_new(lit)),
1321            Err(lex) => Err(LexError {
1322                inner: lex,
1323                _marker: MARKER,
1324            }),
1325        }
1326    }
1327}
1328
1329impl Debug for Literal {
1330    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1331        Debug::fmt(&self.inner, f)
1332    }
1333}
1334
1335impl Display for Literal {
1336    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1337        Display::fmt(&self.inner, f)
1338    }
1339}
1340
1341/// Public implementation details for the `TokenStream` type, such as iterators.
1342pub mod token_stream {
1343    use crate::marker::{ProcMacroAutoTraits, MARKER};
1344    use crate::{imp, TokenTree};
1345    use core::fmt::{self, Debug};
1346
1347    pub use crate::TokenStream;
1348
1349    /// An iterator over `TokenStream`'s `TokenTree`s.
1350    ///
1351    /// The iteration is "shallow", e.g. the iterator doesn't recurse into
1352    /// delimited groups, and returns whole groups as token trees.
1353    #[derive(Clone)]
1354    pub struct IntoIter {
1355        inner: imp::TokenTreeIter,
1356        _marker: ProcMacroAutoTraits,
1357    }
1358
1359    impl Iterator for IntoIter {
1360        type Item = TokenTree;
1361
1362        fn next(&mut self) -> Option<TokenTree> {
1363            self.inner.next()
1364        }
1365
1366        fn size_hint(&self) -> (usize, Option<usize>) {
1367            self.inner.size_hint()
1368        }
1369    }
1370
1371    impl Debug for IntoIter {
1372        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1373            f.write_str("TokenStream ")?;
1374            f.debug_list().entries(self.clone()).finish()
1375        }
1376    }
1377
1378    impl IntoIterator for TokenStream {
1379        type Item = TokenTree;
1380        type IntoIter = IntoIter;
1381
1382        fn into_iter(self) -> IntoIter {
1383            IntoIter {
1384                inner: self.inner.into_iter(),
1385                _marker: MARKER,
1386            }
1387        }
1388    }
1389}