rand/seq/slice.rs
1// Copyright 2018-2023 Developers of the Rand project.
2//
3// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
4// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
5// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
6// option. This file may not be copied, modified, or distributed
7// except according to those terms.
8
9//! `IndexedRandom`, `IndexedMutRandom`, `SliceRandom`
10
11use super::increasing_uniform::IncreasingUniform;
12use super::index;
13#[cfg(feature = "alloc")]
14use crate::distr::uniform::{SampleBorrow, SampleUniform};
15#[cfg(feature = "alloc")]
16use crate::distr::weighted::{Error as WeightError, Weight};
17use crate::Rng;
18use core::ops::{Index, IndexMut};
19
20/// Extension trait on indexable lists, providing random sampling methods.
21///
22/// This trait is implemented on `[T]` slice types. Other types supporting
23/// [`std::ops::Index<usize>`] may implement this (only [`Self::len`] must be
24/// specified).
25pub trait IndexedRandom: Index<usize> {
26 /// The length
27 fn len(&self) -> usize;
28
29 /// True when the length is zero
30 #[inline]
31 fn is_empty(&self) -> bool {
32 self.len() == 0
33 }
34
35 /// Uniformly sample one element
36 ///
37 /// Returns a reference to one uniformly-sampled random element of
38 /// the slice, or `None` if the slice is empty.
39 ///
40 /// For slices, complexity is `O(1)`.
41 ///
42 /// # Example
43 ///
44 /// ```
45 /// use rand::seq::IndexedRandom;
46 ///
47 /// let choices = [1, 2, 4, 8, 16, 32];
48 /// let mut rng = rand::rng();
49 /// println!("{:?}", choices.choose(&mut rng));
50 /// assert_eq!(choices[..0].choose(&mut rng), None);
51 /// ```
52 fn choose<R>(&self, rng: &mut R) -> Option<&Self::Output>
53 where
54 R: Rng + ?Sized,
55 {
56 if self.is_empty() {
57 None
58 } else {
59 Some(&self[rng.random_range(..self.len())])
60 }
61 }
62
63 /// Uniformly sample `amount` distinct elements from self
64 ///
65 /// Chooses `amount` elements from the slice at random, without repetition,
66 /// and in random order. The returned iterator is appropriate both for
67 /// collection into a `Vec` and filling an existing buffer (see example).
68 ///
69 /// In case this API is not sufficiently flexible, use [`index::sample`].
70 ///
71 /// For slices, complexity is the same as [`index::sample`].
72 ///
73 /// # Example
74 /// ```
75 /// use rand::seq::IndexedRandom;
76 ///
77 /// let mut rng = &mut rand::rng();
78 /// let sample = "Hello, audience!".as_bytes();
79 ///
80 /// // collect the results into a vector:
81 /// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect();
82 ///
83 /// // store in a buffer:
84 /// let mut buf = [0u8; 5];
85 /// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) {
86 /// *slot = *b;
87 /// }
88 /// ```
89 #[cfg(feature = "alloc")]
90 fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Output>
91 where
92 Self::Output: Sized,
93 R: Rng + ?Sized,
94 {
95 let amount = core::cmp::min(amount, self.len());
96 SliceChooseIter {
97 slice: self,
98 _phantom: Default::default(),
99 indices: index::sample(rng, self.len(), amount).into_iter(),
100 }
101 }
102
103 /// Uniformly sample a fixed-size array of distinct elements from self
104 ///
105 /// Chooses `N` elements from the slice at random, without repetition,
106 /// and in random order.
107 ///
108 /// For slices, complexity is the same as [`index::sample_array`].
109 ///
110 /// # Example
111 /// ```
112 /// use rand::seq::IndexedRandom;
113 ///
114 /// let mut rng = &mut rand::rng();
115 /// let sample = "Hello, audience!".as_bytes();
116 ///
117 /// let a: [u8; 3] = sample.choose_multiple_array(&mut rng).unwrap();
118 /// ```
119 fn choose_multiple_array<R, const N: usize>(&self, rng: &mut R) -> Option<[Self::Output; N]>
120 where
121 Self::Output: Clone + Sized,
122 R: Rng + ?Sized,
123 {
124 let indices = index::sample_array(rng, self.len())?;
125 Some(indices.map(|index| self[index].clone()))
126 }
127
128 /// Biased sampling for one element
129 ///
130 /// Returns a reference to one element of the slice, sampled according
131 /// to the provided weights. Returns `None` only if the slice is empty.
132 ///
133 /// The specified function `weight` maps each item `x` to a relative
134 /// likelihood `weight(x)`. The probability of each item being selected is
135 /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
136 ///
137 /// For slices of length `n`, complexity is `O(n)`.
138 /// For more information about the underlying algorithm,
139 /// see the [`WeightedIndex`] distribution.
140 ///
141 /// See also [`choose_weighted_mut`].
142 ///
143 /// # Example
144 ///
145 /// ```
146 /// use rand::prelude::*;
147 ///
148 /// let choices = [('a', 2), ('b', 1), ('c', 1), ('d', 0)];
149 /// let mut rng = rand::rng();
150 /// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c',
151 /// // and 'd' will never be printed
152 /// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0);
153 /// ```
154 /// [`choose`]: IndexedRandom::choose
155 /// [`choose_weighted_mut`]: IndexedMutRandom::choose_weighted_mut
156 /// [`WeightedIndex`]: crate::distr::weighted::WeightedIndex
157 #[cfg(feature = "alloc")]
158 fn choose_weighted<R, F, B, X>(
159 &self,
160 rng: &mut R,
161 weight: F,
162 ) -> Result<&Self::Output, WeightError>
163 where
164 R: Rng + ?Sized,
165 F: Fn(&Self::Output) -> B,
166 B: SampleBorrow<X>,
167 X: SampleUniform + Weight + PartialOrd<X>,
168 {
169 use crate::distr::{weighted::WeightedIndex, Distribution};
170 let distr = WeightedIndex::new((0..self.len()).map(|idx| weight(&self[idx])))?;
171 Ok(&self[distr.sample(rng)])
172 }
173
174 /// Biased sampling of `amount` distinct elements
175 ///
176 /// Similar to [`choose_multiple`], but where the likelihood of each element's
177 /// inclusion in the output may be specified. The elements are returned in an
178 /// arbitrary, unspecified order.
179 ///
180 /// The specified function `weight` maps each item `x` to a relative
181 /// likelihood `weight(x)`. The probability of each item being selected is
182 /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
183 ///
184 /// If all of the weights are equal, even if they are all zero, each element has
185 /// an equal likelihood of being selected.
186 ///
187 /// This implementation uses `O(length + amount)` space and `O(length)` time
188 /// if the "nightly" feature is enabled, or `O(length)` space and
189 /// `O(length + amount * log length)` time otherwise.
190 ///
191 /// # Known issues
192 ///
193 /// The algorithm currently used to implement this method loses accuracy
194 /// when small values are used for weights.
195 /// See [#1476](https://github.com/rust-random/rand/issues/1476).
196 ///
197 /// # Example
198 ///
199 /// ```
200 /// use rand::prelude::*;
201 ///
202 /// let choices = [('a', 2), ('b', 1), ('c', 1)];
203 /// let mut rng = rand::rng();
204 /// // First Draw * Second Draw = total odds
205 /// // -----------------------
206 /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'b']` in some order.
207 /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'c']` in some order.
208 /// // (25% * 33%) + (25% * 33%) = 16.6% chance that the output is `['b', 'c']` in some order.
209 /// println!("{:?}", choices.choose_multiple_weighted(&mut rng, 2, |item| item.1).unwrap().collect::<Vec<_>>());
210 /// ```
211 /// [`choose_multiple`]: IndexedRandom::choose_multiple
212 // Note: this is feature-gated on std due to usage of f64::powf.
213 // If necessary, we may use alloc+libm as an alternative (see PR #1089).
214 #[cfg(feature = "std")]
215 fn choose_multiple_weighted<R, F, X>(
216 &self,
217 rng: &mut R,
218 amount: usize,
219 weight: F,
220 ) -> Result<SliceChooseIter<Self, Self::Output>, WeightError>
221 where
222 Self::Output: Sized,
223 R: Rng + ?Sized,
224 F: Fn(&Self::Output) -> X,
225 X: Into<f64>,
226 {
227 let amount = core::cmp::min(amount, self.len());
228 Ok(SliceChooseIter {
229 slice: self,
230 _phantom: Default::default(),
231 indices: index::sample_weighted(
232 rng,
233 self.len(),
234 |idx| weight(&self[idx]).into(),
235 amount,
236 )?
237 .into_iter(),
238 })
239 }
240}
241
242/// Extension trait on indexable lists, providing random sampling methods.
243///
244/// This trait is implemented automatically for every type implementing
245/// [`IndexedRandom`] and [`std::ops::IndexMut<usize>`].
246pub trait IndexedMutRandom: IndexedRandom + IndexMut<usize> {
247 /// Uniformly sample one element (mut)
248 ///
249 /// Returns a mutable reference to one uniformly-sampled random element of
250 /// the slice, or `None` if the slice is empty.
251 ///
252 /// For slices, complexity is `O(1)`.
253 fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Output>
254 where
255 R: Rng + ?Sized,
256 {
257 if self.is_empty() {
258 None
259 } else {
260 let len = self.len();
261 Some(&mut self[rng.random_range(..len)])
262 }
263 }
264
265 /// Biased sampling for one element (mut)
266 ///
267 /// Returns a mutable reference to one element of the slice, sampled according
268 /// to the provided weights. Returns `None` only if the slice is empty.
269 ///
270 /// The specified function `weight` maps each item `x` to a relative
271 /// likelihood `weight(x)`. The probability of each item being selected is
272 /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
273 ///
274 /// For slices of length `n`, complexity is `O(n)`.
275 /// For more information about the underlying algorithm,
276 /// see the [`WeightedIndex`] distribution.
277 ///
278 /// See also [`choose_weighted`].
279 ///
280 /// [`choose_mut`]: IndexedMutRandom::choose_mut
281 /// [`choose_weighted`]: IndexedRandom::choose_weighted
282 /// [`WeightedIndex`]: crate::distr::weighted::WeightedIndex
283 #[cfg(feature = "alloc")]
284 fn choose_weighted_mut<R, F, B, X>(
285 &mut self,
286 rng: &mut R,
287 weight: F,
288 ) -> Result<&mut Self::Output, WeightError>
289 where
290 R: Rng + ?Sized,
291 F: Fn(&Self::Output) -> B,
292 B: SampleBorrow<X>,
293 X: SampleUniform + Weight + PartialOrd<X>,
294 {
295 use crate::distr::{weighted::WeightedIndex, Distribution};
296 let distr = WeightedIndex::new((0..self.len()).map(|idx| weight(&self[idx])))?;
297 let index = distr.sample(rng);
298 Ok(&mut self[index])
299 }
300}
301
302/// Extension trait on slices, providing shuffling methods.
303///
304/// This trait is implemented on all `[T]` slice types, providing several
305/// methods for choosing and shuffling elements. You must `use` this trait:
306///
307/// ```
308/// use rand::seq::SliceRandom;
309///
310/// let mut rng = rand::rng();
311/// let mut bytes = "Hello, random!".to_string().into_bytes();
312/// bytes.shuffle(&mut rng);
313/// let str = String::from_utf8(bytes).unwrap();
314/// println!("{}", str);
315/// ```
316/// Example output (non-deterministic):
317/// ```none
318/// l,nmroHado !le
319/// ```
320pub trait SliceRandom: IndexedMutRandom {
321 /// Shuffle a mutable slice in place.
322 ///
323 /// For slices of length `n`, complexity is `O(n)`.
324 /// The resulting permutation is picked uniformly from the set of all possible permutations.
325 ///
326 /// # Example
327 ///
328 /// ```
329 /// use rand::seq::SliceRandom;
330 ///
331 /// let mut rng = rand::rng();
332 /// let mut y = [1, 2, 3, 4, 5];
333 /// println!("Unshuffled: {:?}", y);
334 /// y.shuffle(&mut rng);
335 /// println!("Shuffled: {:?}", y);
336 /// ```
337 fn shuffle<R>(&mut self, rng: &mut R)
338 where
339 R: Rng + ?Sized;
340
341 /// Shuffle a slice in place, but exit early.
342 ///
343 /// Returns two mutable slices from the source slice. The first contains
344 /// `amount` elements randomly permuted. The second has the remaining
345 /// elements that are not fully shuffled.
346 ///
347 /// This is an efficient method to select `amount` elements at random from
348 /// the slice, provided the slice may be mutated.
349 ///
350 /// If you only need to choose elements randomly and `amount > self.len()/2`
351 /// then you may improve performance by taking
352 /// `amount = self.len() - amount` and using only the second slice.
353 ///
354 /// If `amount` is greater than the number of elements in the slice, this
355 /// will perform a full shuffle.
356 ///
357 /// For slices, complexity is `O(m)` where `m = amount`.
358 fn partial_shuffle<R>(
359 &mut self,
360 rng: &mut R,
361 amount: usize,
362 ) -> (&mut [Self::Output], &mut [Self::Output])
363 where
364 Self::Output: Sized,
365 R: Rng + ?Sized;
366}
367
368impl<T> IndexedRandom for [T] {
369 fn len(&self) -> usize {
370 self.len()
371 }
372}
373
374impl<IR: IndexedRandom + IndexMut<usize> + ?Sized> IndexedMutRandom for IR {}
375
376impl<T> SliceRandom for [T] {
377 fn shuffle<R>(&mut self, rng: &mut R)
378 where
379 R: Rng + ?Sized,
380 {
381 if self.len() <= 1 {
382 // There is no need to shuffle an empty or single element slice
383 return;
384 }
385 self.partial_shuffle(rng, self.len());
386 }
387
388 fn partial_shuffle<R>(&mut self, rng: &mut R, amount: usize) -> (&mut [T], &mut [T])
389 where
390 R: Rng + ?Sized,
391 {
392 let m = self.len().saturating_sub(amount);
393
394 // The algorithm below is based on Durstenfeld's algorithm for the
395 // [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm)
396 // for an unbiased permutation.
397 // It ensures that the last `amount` elements of the slice
398 // are randomly selected from the whole slice.
399
400 // `IncreasingUniform::next_index()` is faster than `Rng::random_range`
401 // but only works for 32 bit integers
402 // So we must use the slow method if the slice is longer than that.
403 if self.len() < (u32::MAX as usize) {
404 let mut chooser = IncreasingUniform::new(rng, m as u32);
405 for i in m..self.len() {
406 let index = chooser.next_index();
407 self.swap(i, index);
408 }
409 } else {
410 for i in m..self.len() {
411 let index = rng.random_range(..i + 1);
412 self.swap(i, index);
413 }
414 }
415 let r = self.split_at_mut(m);
416 (r.1, r.0)
417 }
418}
419
420/// An iterator over multiple slice elements.
421///
422/// This struct is created by
423/// [`IndexedRandom::choose_multiple`](trait.IndexedRandom.html#tymethod.choose_multiple).
424#[cfg(feature = "alloc")]
425#[derive(Debug)]
426pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> {
427 slice: &'a S,
428 _phantom: core::marker::PhantomData<T>,
429 indices: index::IndexVecIntoIter,
430}
431
432#[cfg(feature = "alloc")]
433impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> {
434 type Item = &'a T;
435
436 fn next(&mut self) -> Option<Self::Item> {
437 // TODO: investigate using SliceIndex::get_unchecked when stable
438 self.indices.next().map(|i| &self.slice[i])
439 }
440
441 fn size_hint(&self) -> (usize, Option<usize>) {
442 (self.indices.len(), Some(self.indices.len()))
443 }
444}
445
446#[cfg(feature = "alloc")]
447impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator
448 for SliceChooseIter<'a, S, T>
449{
450 fn len(&self) -> usize {
451 self.indices.len()
452 }
453}
454
455#[cfg(test)]
456mod test {
457 use super::*;
458 #[cfg(feature = "alloc")]
459 use alloc::vec::Vec;
460
461 #[test]
462 fn test_slice_choose() {
463 let mut r = crate::test::rng(107);
464 let chars = [
465 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
466 ];
467 let mut chosen = [0i32; 14];
468 // The below all use a binomial distribution with n=1000, p=1/14.
469 // binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5
470 for _ in 0..1000 {
471 let picked = *chars.choose(&mut r).unwrap();
472 chosen[(picked as usize) - ('a' as usize)] += 1;
473 }
474 for count in chosen.iter() {
475 assert!(40 < *count && *count < 106);
476 }
477
478 chosen.iter_mut().for_each(|x| *x = 0);
479 for _ in 0..1000 {
480 *chosen.choose_mut(&mut r).unwrap() += 1;
481 }
482 for count in chosen.iter() {
483 assert!(40 < *count && *count < 106);
484 }
485
486 let mut v: [isize; 0] = [];
487 assert_eq!(v.choose(&mut r), None);
488 assert_eq!(v.choose_mut(&mut r), None);
489 }
490
491 #[test]
492 fn value_stability_slice() {
493 let mut r = crate::test::rng(413);
494 let chars = [
495 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
496 ];
497 let mut nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
498
499 assert_eq!(chars.choose(&mut r), Some(&'l'));
500 assert_eq!(nums.choose_mut(&mut r), Some(&mut 3));
501
502 assert_eq!(
503 &chars.choose_multiple_array(&mut r),
504 &Some(['f', 'i', 'd', 'b', 'c', 'm', 'j', 'k'])
505 );
506
507 #[cfg(feature = "alloc")]
508 assert_eq!(
509 &chars
510 .choose_multiple(&mut r, 8)
511 .cloned()
512 .collect::<Vec<char>>(),
513 &['h', 'm', 'd', 'b', 'c', 'e', 'n', 'f']
514 );
515
516 #[cfg(feature = "alloc")]
517 assert_eq!(chars.choose_weighted(&mut r, |_| 1), Ok(&'i'));
518 #[cfg(feature = "alloc")]
519 assert_eq!(nums.choose_weighted_mut(&mut r, |_| 1), Ok(&mut 2));
520
521 let mut r = crate::test::rng(414);
522 nums.shuffle(&mut r);
523 assert_eq!(nums, [5, 11, 0, 8, 7, 12, 6, 4, 9, 3, 1, 2, 10]);
524 nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
525 let res = nums.partial_shuffle(&mut r, 6);
526 assert_eq!(res.0, &mut [7, 12, 6, 8, 1, 9]);
527 assert_eq!(res.1, &mut [0, 11, 2, 3, 4, 5, 10]);
528 }
529
530 #[test]
531 #[cfg_attr(miri, ignore)] // Miri is too slow
532 fn test_shuffle() {
533 let mut r = crate::test::rng(108);
534 let empty: &mut [isize] = &mut [];
535 empty.shuffle(&mut r);
536 let mut one = [1];
537 one.shuffle(&mut r);
538 let b: &[_] = &[1];
539 assert_eq!(one, b);
540
541 let mut two = [1, 2];
542 two.shuffle(&mut r);
543 assert!(two == [1, 2] || two == [2, 1]);
544
545 fn move_last(slice: &mut [usize], pos: usize) {
546 // use slice[pos..].rotate_left(1); once we can use that
547 let last_val = slice[pos];
548 for i in pos..slice.len() - 1 {
549 slice[i] = slice[i + 1];
550 }
551 *slice.last_mut().unwrap() = last_val;
552 }
553 let mut counts = [0i32; 24];
554 for _ in 0..10000 {
555 let mut arr: [usize; 4] = [0, 1, 2, 3];
556 arr.shuffle(&mut r);
557 let mut permutation = 0usize;
558 let mut pos_value = counts.len();
559 for i in 0..4 {
560 pos_value /= 4 - i;
561 let pos = arr.iter().position(|&x| x == i).unwrap();
562 assert!(pos < (4 - i));
563 permutation += pos * pos_value;
564 move_last(&mut arr, pos);
565 assert_eq!(arr[3], i);
566 }
567 for (i, &a) in arr.iter().enumerate() {
568 assert_eq!(a, i);
569 }
570 counts[permutation] += 1;
571 }
572 for count in counts.iter() {
573 // Binomial(10000, 1/24) with average 416.667
574 // Octave: binocdf(n, 10000, 1/24)
575 // 99.9% chance samples lie within this range:
576 assert!(352 <= *count && *count <= 483, "count: {}", count);
577 }
578 }
579
580 #[test]
581 fn test_partial_shuffle() {
582 let mut r = crate::test::rng(118);
583
584 let mut empty: [u32; 0] = [];
585 let res = empty.partial_shuffle(&mut r, 10);
586 assert_eq!((res.0.len(), res.1.len()), (0, 0));
587
588 let mut v = [1, 2, 3, 4, 5];
589 let res = v.partial_shuffle(&mut r, 2);
590 assert_eq!((res.0.len(), res.1.len()), (2, 3));
591 assert!(res.0[0] != res.0[1]);
592 // First elements are only modified if selected, so at least one isn't modified:
593 assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3);
594 }
595
596 #[test]
597 #[cfg(feature = "alloc")]
598 #[cfg_attr(miri, ignore)] // Miri is too slow
599 fn test_weighted() {
600 let mut r = crate::test::rng(406);
601 const N_REPS: u32 = 3000;
602 let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];
603 let total_weight = weights.iter().sum::<u32>() as f32;
604
605 let verify = |result: [i32; 14]| {
606 for (i, count) in result.iter().enumerate() {
607 let exp = (weights[i] * N_REPS) as f32 / total_weight;
608 let mut err = (*count as f32 - exp).abs();
609 if err != 0.0 {
610 err /= exp;
611 }
612 assert!(err <= 0.25);
613 }
614 };
615
616 // choose_weighted
617 fn get_weight<T>(item: &(u32, T)) -> u32 {
618 item.0
619 }
620 let mut chosen = [0i32; 14];
621 let mut items = [(0u32, 0usize); 14]; // (weight, index)
622 for (i, item) in items.iter_mut().enumerate() {
623 *item = (weights[i], i);
624 }
625 for _ in 0..N_REPS {
626 let item = items.choose_weighted(&mut r, get_weight).unwrap();
627 chosen[item.1] += 1;
628 }
629 verify(chosen);
630
631 // choose_weighted_mut
632 let mut items = [(0u32, 0i32); 14]; // (weight, count)
633 for (i, item) in items.iter_mut().enumerate() {
634 *item = (weights[i], 0);
635 }
636 for _ in 0..N_REPS {
637 items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1;
638 }
639 for (ch, item) in chosen.iter_mut().zip(items.iter()) {
640 *ch = item.1;
641 }
642 verify(chosen);
643
644 // Check error cases
645 let empty_slice = &mut [10][0..0];
646 assert_eq!(
647 empty_slice.choose_weighted(&mut r, |_| 1),
648 Err(WeightError::InvalidInput)
649 );
650 assert_eq!(
651 empty_slice.choose_weighted_mut(&mut r, |_| 1),
652 Err(WeightError::InvalidInput)
653 );
654 assert_eq!(
655 ['x'].choose_weighted_mut(&mut r, |_| 0),
656 Err(WeightError::InsufficientNonZero)
657 );
658 assert_eq!(
659 [0, -1].choose_weighted_mut(&mut r, |x| *x),
660 Err(WeightError::InvalidWeight)
661 );
662 assert_eq!(
663 [-1, 0].choose_weighted_mut(&mut r, |x| *x),
664 Err(WeightError::InvalidWeight)
665 );
666 }
667
668 #[test]
669 #[cfg(feature = "std")]
670 fn test_multiple_weighted_edge_cases() {
671 use super::*;
672
673 let mut rng = crate::test::rng(413);
674
675 // Case 1: One of the weights is 0
676 let choices = [('a', 2), ('b', 1), ('c', 0)];
677 for _ in 0..100 {
678 let result = choices
679 .choose_multiple_weighted(&mut rng, 2, |item| item.1)
680 .unwrap()
681 .collect::<Vec<_>>();
682
683 assert_eq!(result.len(), 2);
684 assert!(!result.iter().any(|val| val.0 == 'c'));
685 }
686
687 // Case 2: All of the weights are 0
688 let choices = [('a', 0), ('b', 0), ('c', 0)];
689 let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
690 assert_eq!(r.unwrap_err(), WeightError::InsufficientNonZero);
691
692 // Case 3: Negative weights
693 let choices = [('a', -1), ('b', 1), ('c', 1)];
694 let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
695 assert_eq!(r.unwrap_err(), WeightError::InvalidWeight);
696
697 // Case 4: Empty list
698 let choices = [];
699 let r = choices.choose_multiple_weighted(&mut rng, 0, |_: &()| 0);
700 assert_eq!(r.unwrap().count(), 0);
701
702 // Case 5: NaN weights
703 let choices = [('a', f64::NAN), ('b', 1.0), ('c', 1.0)];
704 let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
705 assert_eq!(r.unwrap_err(), WeightError::InvalidWeight);
706
707 // Case 6: +infinity weights
708 let choices = [('a', f64::INFINITY), ('b', 1.0), ('c', 1.0)];
709 for _ in 0..100 {
710 let result = choices
711 .choose_multiple_weighted(&mut rng, 2, |item| item.1)
712 .unwrap()
713 .collect::<Vec<_>>();
714 assert_eq!(result.len(), 2);
715 assert!(result.iter().any(|val| val.0 == 'a'));
716 }
717
718 // Case 7: -infinity weights
719 let choices = [('a', f64::NEG_INFINITY), ('b', 1.0), ('c', 1.0)];
720 let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
721 assert_eq!(r.unwrap_err(), WeightError::InvalidWeight);
722
723 // Case 8: -0 weights
724 let choices = [('a', -0.0), ('b', 1.0), ('c', 1.0)];
725 let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
726 assert!(r.is_ok());
727 }
728
729 #[test]
730 #[cfg(feature = "std")]
731 fn test_multiple_weighted_distributions() {
732 use super::*;
733
734 // The theoretical probabilities of the different outcomes are:
735 // AB: 0.5 * 0.667 = 0.3333
736 // AC: 0.5 * 0.333 = 0.1667
737 // BA: 0.333 * 0.75 = 0.25
738 // BC: 0.333 * 0.25 = 0.0833
739 // CA: 0.167 * 0.6 = 0.1
740 // CB: 0.167 * 0.4 = 0.0667
741 let choices = [('a', 3), ('b', 2), ('c', 1)];
742 let mut rng = crate::test::rng(414);
743
744 let mut results = [0i32; 3];
745 let expected_results = [5833, 2667, 1500];
746 for _ in 0..10000 {
747 let result = choices
748 .choose_multiple_weighted(&mut rng, 2, |item| item.1)
749 .unwrap()
750 .collect::<Vec<_>>();
751
752 assert_eq!(result.len(), 2);
753
754 match (result[0].0, result[1].0) {
755 ('a', 'b') | ('b', 'a') => {
756 results[0] += 1;
757 }
758 ('a', 'c') | ('c', 'a') => {
759 results[1] += 1;
760 }
761 ('b', 'c') | ('c', 'b') => {
762 results[2] += 1;
763 }
764 (_, _) => panic!("unexpected result"),
765 }
766 }
767
768 let mut diffs = results
769 .iter()
770 .zip(&expected_results)
771 .map(|(a, b)| (a - b).abs());
772 assert!(!diffs.any(|deviation| deviation > 100));
773 }
774}