regex_automata/nfa/thompson/compiler.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
use core::{borrow::Borrow, cell::RefCell};
use alloc::{sync::Arc, vec, vec::Vec};
use regex_syntax::{
hir::{self, Hir},
utf8::{Utf8Range, Utf8Sequences},
ParserBuilder,
};
use crate::{
nfa::thompson::{
builder::Builder,
error::BuildError,
literal_trie::LiteralTrie,
map::{Utf8BoundedMap, Utf8SuffixKey, Utf8SuffixMap},
nfa::{Transition, NFA},
range_trie::RangeTrie,
},
util::{
look::{Look, LookMatcher},
primitives::{PatternID, StateID},
},
};
/// The configuration used for a Thompson NFA compiler.
#[derive(Clone, Debug, Default)]
pub struct Config {
utf8: Option<bool>,
reverse: Option<bool>,
nfa_size_limit: Option<Option<usize>>,
shrink: Option<bool>,
which_captures: Option<WhichCaptures>,
look_matcher: Option<LookMatcher>,
#[cfg(test)]
unanchored_prefix: Option<bool>,
}
impl Config {
/// Return a new default Thompson NFA compiler configuration.
pub fn new() -> Config {
Config::default()
}
/// Whether to enable UTF-8 mode during search or not.
///
/// A regex engine is said to be in UTF-8 mode when it guarantees that
/// all matches returned by it have spans consisting of only valid UTF-8.
/// That is, it is impossible for a match span to be returned that
/// contains any invalid UTF-8.
///
/// UTF-8 mode generally consists of two things:
///
/// 1. Whether the NFA's states are constructed such that all paths to a
/// match state that consume at least one byte always correspond to valid
/// UTF-8.
/// 2. Whether all paths to a match state that do _not_ consume any bytes
/// should always correspond to valid UTF-8 boundaries.
///
/// (1) is a guarantee made by whoever constructs the NFA.
/// If you're parsing a regex from its concrete syntax, then
/// [`syntax::Config::utf8`](crate::util::syntax::Config::utf8) can make
/// this guarantee for you. It does it by returning an error if the regex
/// pattern could every report a non-empty match span that contains invalid
/// UTF-8. So long as `syntax::Config::utf8` mode is enabled and your regex
/// successfully parses, then you're guaranteed that the corresponding NFA
/// will only ever report non-empty match spans containing valid UTF-8.
///
/// (2) is a trickier guarantee because it cannot be enforced by the NFA
/// state graph itself. Consider, for example, the regex `a*`. It matches
/// the empty strings in `ā` at positions `0`, `1`, `2` and `3`, where
/// positions `1` and `2` occur within the UTF-8 encoding of a codepoint,
/// and thus correspond to invalid UTF-8 boundaries. Therefore, this
/// guarantee must be made at a higher level than the NFA state graph
/// itself. This crate deals with this case in each regex engine. Namely,
/// when a zero-width match that splits a codepoint is found and UTF-8
/// mode enabled, then it is ignored and the engine moves on looking for
/// the next match.
///
/// Thus, UTF-8 mode is both a promise that the NFA built only reports
/// non-empty matches that are valid UTF-8, and an *instruction* to regex
/// engines that empty matches that split codepoints should be banned.
///
/// Because UTF-8 mode is fundamentally about avoiding invalid UTF-8 spans,
/// it only makes sense to enable this option when you *know* your haystack
/// is valid UTF-8. (For example, a `&str`.) Enabling UTF-8 mode and
/// searching a haystack that contains invalid UTF-8 leads to **unspecified
/// behavior**.
///
/// Therefore, it may make sense to enable `syntax::Config::utf8` while
/// simultaneously *disabling* this option. That would ensure all non-empty
/// match spans are valid UTF-8, but that empty match spans may still split
/// a codepoint or match at other places that aren't valid UTF-8.
///
/// In general, this mode is only relevant if your regex can match the
/// empty string. Most regexes don't.
///
/// This is enabled by default.
///
/// # Example
///
/// This example shows how UTF-8 mode can impact the match spans that may
/// be reported in certain cases.
///
/// ```
/// use regex_automata::{
/// nfa::thompson::{self, pikevm::PikeVM},
/// Match, Input,
/// };
///
/// let re = PikeVM::new("")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// // UTF-8 mode is enabled by default.
/// let mut input = Input::new("ā");
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 0..0)), caps.get_match());
///
/// // Even though an empty regex matches at 1..1, our next match is
/// // 3..3 because 1..1 and 2..2 split the snowman codepoint (which is
/// // three bytes long).
/// input.set_start(1);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 3..3)), caps.get_match());
///
/// // But if we disable UTF-8, then we'll get matches at 1..1 and 2..2:
/// let re = PikeVM::builder()
/// .thompson(thompson::Config::new().utf8(false))
/// .build("")?;
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 1..1)), caps.get_match());
///
/// input.set_start(2);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 2..2)), caps.get_match());
///
/// input.set_start(3);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 3..3)), caps.get_match());
///
/// input.set_start(4);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(None, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn utf8(mut self, yes: bool) -> Config {
self.utf8 = Some(yes);
self
}
/// Reverse the NFA.
///
/// A NFA reversal is performed by reversing all of the concatenated
/// sub-expressions in the original pattern, recursively. (Look around
/// operators are also inverted.) The resulting NFA can be used to match
/// the pattern starting from the end of a string instead of the beginning
/// of a string.
///
/// Reversing the NFA is useful for building a reverse DFA, which is most
/// useful for finding the start of a match after its ending position has
/// been found. NFA execution engines typically do not work on reverse
/// NFAs. For example, currently, the Pike VM reports the starting location
/// of matches without a reverse NFA.
///
/// Currently, enabling this setting requires disabling the
/// [`captures`](Config::captures) setting. If both are enabled, then the
/// compiler will return an error. It is expected that this limitation will
/// be lifted in the future.
///
/// This is disabled by default.
///
/// # Example
///
/// This example shows how to build a DFA from a reverse NFA, and then use
/// the DFA to search backwards.
///
/// ```
/// use regex_automata::{
/// dfa::{self, Automaton},
/// nfa::thompson::{NFA, WhichCaptures},
/// HalfMatch, Input,
/// };
///
/// let dfa = dfa::dense::Builder::new()
/// .thompson(NFA::config()
/// .which_captures(WhichCaptures::None)
/// .reverse(true)
/// )
/// .build("baz[0-9]+")?;
/// let expected = Some(HalfMatch::must(0, 3));
/// assert_eq!(
/// expected,
/// dfa.try_search_rev(&Input::new("foobaz12345bar"))?,
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn reverse(mut self, yes: bool) -> Config {
self.reverse = Some(yes);
self
}
/// Sets an approximate size limit on the total heap used by the NFA being
/// compiled.
///
/// This permits imposing constraints on the size of a compiled NFA. This
/// may be useful in contexts where the regex pattern is untrusted and one
/// wants to avoid using too much memory.
///
/// This size limit does not apply to auxiliary heap used during
/// compilation that is not part of the built NFA.
///
/// Note that this size limit is applied during compilation in order for
/// the limit to prevent too much heap from being used. However, the
/// implementation may use an intermediate NFA representation that is
/// otherwise slightly bigger than the final public form. Since the size
/// limit may be applied to an intermediate representation, there is not
/// necessarily a precise correspondence between the configured size limit
/// and the heap usage of the final NFA.
///
/// There is no size limit by default.
///
/// # Example
///
/// This example demonstrates how Unicode mode can greatly increase the
/// size of the NFA.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::nfa::thompson::NFA;
///
/// // 300KB isn't enough!
/// NFA::compiler()
/// .configure(NFA::config().nfa_size_limit(Some(300_000)))
/// .build(r"\w{20}")
/// .unwrap_err();
///
/// // ... but 400KB probably is.
/// let nfa = NFA::compiler()
/// .configure(NFA::config().nfa_size_limit(Some(400_000)))
/// .build(r"\w{20}")?;
///
/// assert_eq!(nfa.pattern_len(), 1);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn nfa_size_limit(mut self, bytes: Option<usize>) -> Config {
self.nfa_size_limit = Some(bytes);
self
}
/// Apply best effort heuristics to shrink the NFA at the expense of more
/// time/memory.
///
/// Generally speaking, if one is using an NFA to compile a DFA, then the
/// extra time used to shrink the NFA will be more than made up for during
/// DFA construction (potentially by a lot). In other words, enabling this
/// can substantially decrease the overall amount of time it takes to build
/// a DFA.
///
/// A reason to keep this disabled is if you want to compile an NFA and
/// start using it as quickly as possible without needing to build a DFA,
/// and you don't mind using a bit of extra memory for the NFA. e.g., for
/// an NFA simulation or for a lazy DFA.
///
/// NFA shrinking is currently most useful when compiling a reverse
/// NFA with large Unicode character classes. In particular, it trades
/// additional CPU time during NFA compilation in favor of generating fewer
/// NFA states.
///
/// This is disabled by default because it can increase compile times
/// quite a bit if you aren't building a full DFA.
///
/// # Example
///
/// This example shows that NFA shrinking can lead to substantial space
/// savings in some cases. Notice that, as noted above, we build a reverse
/// DFA and use a pattern with a large Unicode character class.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::nfa::thompson::{NFA, WhichCaptures};
///
/// // Currently we have to disable captures when enabling reverse NFA.
/// let config = NFA::config()
/// .which_captures(WhichCaptures::None)
/// .reverse(true);
/// let not_shrunk = NFA::compiler()
/// .configure(config.clone().shrink(false))
/// .build(r"\w")?;
/// let shrunk = NFA::compiler()
/// .configure(config.clone().shrink(true))
/// .build(r"\w")?;
///
/// // While a specific shrink factor is not guaranteed, the savings can be
/// // considerable in some cases.
/// assert!(shrunk.states().len() * 2 < not_shrunk.states().len());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn shrink(mut self, yes: bool) -> Config {
self.shrink = Some(yes);
self
}
/// Whether to include 'Capture' states in the NFA.
///
/// Currently, enabling this setting requires disabling the
/// [`reverse`](Config::reverse) setting. If both are enabled, then the
/// compiler will return an error. It is expected that this limitation will
/// be lifted in the future.
///
/// This is enabled by default.
///
/// # Example
///
/// This example demonstrates that some regex engines, like the Pike VM,
/// require capturing states to be present in the NFA to report match
/// offsets.
///
/// (Note that since this method is deprecated, the example below uses
/// [`Config::which_captures`] to disable capture states.)
///
/// ```
/// use regex_automata::nfa::thompson::{
/// pikevm::PikeVM,
/// NFA,
/// WhichCaptures,
/// };
///
/// let re = PikeVM::builder()
/// .thompson(NFA::config().which_captures(WhichCaptures::None))
/// .build(r"[a-z]+")?;
/// let mut cache = re.create_cache();
///
/// assert!(re.is_match(&mut cache, "abc"));
/// assert_eq!(None, re.find(&mut cache, "abc"));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[deprecated(since = "0.3.5", note = "use which_captures instead")]
pub fn captures(self, yes: bool) -> Config {
self.which_captures(if yes {
WhichCaptures::All
} else {
WhichCaptures::None
})
}
/// Configures what kinds of capture groups are compiled into
/// [`State::Capture`](crate::nfa::thompson::State::Capture) states in a
/// Thompson NFA.
///
/// Currently, using any option except for [`WhichCaptures::None`] requires
/// disabling the [`reverse`](Config::reverse) setting. If both are
/// enabled, then the compiler will return an error. It is expected that
/// this limitation will be lifted in the future.
///
/// This is set to [`WhichCaptures::All`] by default. Callers may wish to
/// use [`WhichCaptures::Implicit`] in cases where one wants avoid the
/// overhead of capture states for explicit groups. Usually this occurs
/// when one wants to use the `PikeVM` only for determining the overall
/// match. Otherwise, the `PikeVM` could use much more memory than is
/// necessary.
///
/// # Example
///
/// This example demonstrates that some regex engines, like the Pike VM,
/// require capturing states to be present in the NFA to report match
/// offsets.
///
/// ```
/// use regex_automata::nfa::thompson::{
/// pikevm::PikeVM,
/// NFA,
/// WhichCaptures,
/// };
///
/// let re = PikeVM::builder()
/// .thompson(NFA::config().which_captures(WhichCaptures::None))
/// .build(r"[a-z]+")?;
/// let mut cache = re.create_cache();
///
/// assert!(re.is_match(&mut cache, "abc"));
/// assert_eq!(None, re.find(&mut cache, "abc"));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// The same applies to the bounded backtracker:
///
/// ```
/// use regex_automata::nfa::thompson::{
/// backtrack::BoundedBacktracker,
/// NFA,
/// WhichCaptures,
/// };
///
/// let re = BoundedBacktracker::builder()
/// .thompson(NFA::config().which_captures(WhichCaptures::None))
/// .build(r"[a-z]+")?;
/// let mut cache = re.create_cache();
///
/// assert!(re.try_is_match(&mut cache, "abc")?);
/// assert_eq!(None, re.try_find(&mut cache, "abc")?);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn which_captures(mut self, which_captures: WhichCaptures) -> Config {
self.which_captures = Some(which_captures);
self
}
/// Sets the look-around matcher that should be used with this NFA.
///
/// A look-around matcher determines how to match look-around assertions.
/// In particular, some assertions are configurable. For example, the
/// `(?m:^)` and `(?m:$)` assertions can have their line terminator changed
/// from the default of `\n` to any other byte.
///
/// # Example
///
/// This shows how to change the line terminator for multi-line assertions.
///
/// ```
/// use regex_automata::{
/// nfa::thompson::{self, pikevm::PikeVM},
/// util::look::LookMatcher,
/// Match, Input,
/// };
///
/// let mut lookm = LookMatcher::new();
/// lookm.set_line_terminator(b'\x00');
///
/// let re = PikeVM::builder()
/// .thompson(thompson::Config::new().look_matcher(lookm))
/// .build(r"(?m)^[a-z]+$")?;
/// let mut cache = re.create_cache();
///
/// // Multi-line assertions now use NUL as a terminator.
/// assert_eq!(
/// Some(Match::must(0, 1..4)),
/// re.find(&mut cache, b"\x00abc\x00"),
/// );
/// // ... and \n is no longer recognized as a terminator.
/// assert_eq!(
/// None,
/// re.find(&mut cache, b"\nabc\n"),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn look_matcher(mut self, m: LookMatcher) -> Config {
self.look_matcher = Some(m);
self
}
/// Whether to compile an unanchored prefix into this NFA.
///
/// This is enabled by default. It is made available for tests only to make
/// it easier to unit test the output of the compiler.
#[cfg(test)]
fn unanchored_prefix(mut self, yes: bool) -> Config {
self.unanchored_prefix = Some(yes);
self
}
/// Returns whether this configuration has enabled UTF-8 mode.
pub fn get_utf8(&self) -> bool {
self.utf8.unwrap_or(true)
}
/// Returns whether this configuration has enabled reverse NFA compilation.
pub fn get_reverse(&self) -> bool {
self.reverse.unwrap_or(false)
}
/// Return the configured NFA size limit, if it exists, in the number of
/// bytes of heap used.
pub fn get_nfa_size_limit(&self) -> Option<usize> {
self.nfa_size_limit.unwrap_or(None)
}
/// Return whether NFA shrinking is enabled.
pub fn get_shrink(&self) -> bool {
self.shrink.unwrap_or(false)
}
/// Return whether NFA compilation is configured to produce capture states.
#[deprecated(since = "0.3.5", note = "use get_which_captures instead")]
pub fn get_captures(&self) -> bool {
self.get_which_captures().is_any()
}
/// Return what kinds of capture states will be compiled into an NFA.
pub fn get_which_captures(&self) -> WhichCaptures {
self.which_captures.unwrap_or(WhichCaptures::All)
}
/// Return the look-around matcher for this NFA.
pub fn get_look_matcher(&self) -> LookMatcher {
self.look_matcher.clone().unwrap_or(LookMatcher::default())
}
/// Return whether NFA compilation is configured to include an unanchored
/// prefix.
///
/// This is always false when not in test mode.
fn get_unanchored_prefix(&self) -> bool {
#[cfg(test)]
{
self.unanchored_prefix.unwrap_or(true)
}
#[cfg(not(test))]
{
true
}
}
/// Overwrite the default configuration such that the options in `o` are
/// always used. If an option in `o` is not set, then the corresponding
/// option in `self` is used. If it's not set in `self` either, then it
/// remains not set.
pub(crate) fn overwrite(&self, o: Config) -> Config {
Config {
utf8: o.utf8.or(self.utf8),
reverse: o.reverse.or(self.reverse),
nfa_size_limit: o.nfa_size_limit.or(self.nfa_size_limit),
shrink: o.shrink.or(self.shrink),
which_captures: o.which_captures.or(self.which_captures),
look_matcher: o.look_matcher.or_else(|| self.look_matcher.clone()),
#[cfg(test)]
unanchored_prefix: o.unanchored_prefix.or(self.unanchored_prefix),
}
}
}
/// A configuration indicating which kinds of
/// [`State::Capture`](crate::nfa::thompson::State::Capture) states to include.
///
/// This configuration can be used with [`Config::which_captures`] to control
/// which capture states are compiled into a Thompson NFA.
///
/// The default configuration is [`WhichCaptures::All`].
#[derive(Clone, Copy, Debug)]
pub enum WhichCaptures {
/// All capture states, including those corresponding to both implicit and
/// explicit capture groups, are included in the Thompson NFA.
All,
/// Only capture states corresponding to implicit capture groups are
/// included. Implicit capture groups appear in every pattern implicitly
/// and correspond to the overall match of a pattern.
///
/// This is useful when one only cares about the overall match of a
/// pattern. By excluding capture states from explicit capture groups,
/// one might be able to reduce the memory usage of a multi-pattern regex
/// substantially if it was otherwise written to have many explicit capture
/// groups.
Implicit,
/// No capture states are compiled into the Thompson NFA.
///
/// This is useful when capture states are either not needed (for example,
/// if one is only trying to build a DFA) or if they aren't supported (for
/// example, a reverse NFA).
None,
}
impl Default for WhichCaptures {
fn default() -> WhichCaptures {
WhichCaptures::All
}
}
impl WhichCaptures {
/// Returns true if this configuration indicates that no capture states
/// should be produced in an NFA.
pub fn is_none(&self) -> bool {
matches!(*self, WhichCaptures::None)
}
/// Returns true if this configuration indicates that some capture states
/// should be added to an NFA. Note that this might only include capture
/// states for implicit capture groups.
pub fn is_any(&self) -> bool {
!self.is_none()
}
}
/*
This compiler below uses Thompson's construction algorithm. The compiler takes
a regex-syntax::Hir as input and emits an NFA graph as output. The NFA graph
is structured in a way that permits it to be executed by a virtual machine and
also used to efficiently build a DFA.
The compiler deals with a slightly expanded set of NFA states than what is
in a final NFA (as exhibited by builder::State and nfa::State). Notably a
compiler state includes an empty node that has exactly one unconditional
epsilon transition to the next state. In other words, it's a "goto" instruction
if one views Thompson's NFA as a set of bytecode instructions. These goto
instructions are removed in a subsequent phase before returning the NFA to the
caller. The purpose of these empty nodes is that they make the construction
algorithm substantially simpler to implement. We remove them before returning
to the caller because they can represent substantial overhead when traversing
the NFA graph (either while searching using the NFA directly or while building
a DFA).
In the future, it would be nice to provide a Glushkov compiler as well, as it
would work well as a bit-parallel NFA for smaller regexes. But the Thompson
construction is one I'm more familiar with and seems more straight-forward to
deal with when it comes to large Unicode character classes.
Internally, the compiler uses interior mutability to improve composition in the
face of the borrow checker. In particular, we'd really like to be able to write
things like this:
self.c_concat(exprs.iter().map(|e| self.c(e)))
Which elegantly uses iterators to build up a sequence of compiled regex
sub-expressions and then hands it off to the concatenating compiler routine.
Without interior mutability, the borrow checker won't let us borrow `self`
mutably both inside and outside the closure at the same time.
*/
/// A builder for compiling an NFA from a regex's high-level intermediate
/// representation (HIR).
///
/// This compiler provides a way to translate a parsed regex pattern into an
/// NFA state graph. The NFA state graph can either be used directly to execute
/// a search (e.g., with a Pike VM), or it can be further used to build a DFA.
///
/// This compiler provides APIs both for compiling regex patterns directly from
/// their concrete syntax, or via a [`regex_syntax::hir::Hir`].
///
/// This compiler has various options that may be configured via
/// [`thompson::Config`](Config).
///
/// Note that a compiler is not the same as a [`thompson::Builder`](Builder).
/// A `Builder` provides a lower level API that is uncoupled from a regex
/// pattern's concrete syntax or even its HIR. Instead, it permits stitching
/// together an NFA by hand. See its docs for examples.
///
/// # Example: compilation from concrete syntax
///
/// This shows how to compile an NFA from a pattern string while setting a size
/// limit on how big the NFA is allowed to be (in terms of bytes of heap used).
///
/// ```
/// use regex_automata::{
/// nfa::thompson::{NFA, pikevm::PikeVM},
/// Match,
/// };
///
/// let config = NFA::config().nfa_size_limit(Some(1_000));
/// let nfa = NFA::compiler().configure(config).build(r"(?-u)\w")?;
///
/// let re = PikeVM::new_from_nfa(nfa)?;
/// let mut cache = re.create_cache();
/// let mut caps = re.create_captures();
/// let expected = Some(Match::must(0, 3..4));
/// re.captures(&mut cache, "!@#A#@!", &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: compilation from HIR
///
/// This shows how to hand assemble a regular expression via its HIR, and then
/// compile an NFA directly from it.
///
/// ```
/// use regex_automata::{nfa::thompson::{NFA, pikevm::PikeVM}, Match};
/// use regex_syntax::hir::{Hir, Class, ClassBytes, ClassBytesRange};
///
/// let hir = Hir::class(Class::Bytes(ClassBytes::new(vec![
/// ClassBytesRange::new(b'0', b'9'),
/// ClassBytesRange::new(b'A', b'Z'),
/// ClassBytesRange::new(b'_', b'_'),
/// ClassBytesRange::new(b'a', b'z'),
/// ])));
///
/// let config = NFA::config().nfa_size_limit(Some(1_000));
/// let nfa = NFA::compiler().configure(config).build_from_hir(&hir)?;
///
/// let re = PikeVM::new_from_nfa(nfa)?;
/// let mut cache = re.create_cache();
/// let mut caps = re.create_captures();
/// let expected = Some(Match::must(0, 3..4));
/// re.captures(&mut cache, "!@#A#@!", &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct Compiler {
/// A regex parser, used when compiling an NFA directly from a pattern
/// string.
parser: ParserBuilder,
/// The compiler configuration.
config: Config,
/// The builder for actually constructing an NFA. This provides a
/// convenient abstraction for writing a compiler.
builder: RefCell<Builder>,
/// State used for compiling character classes to UTF-8 byte automata.
/// State is not retained between character class compilations. This just
/// serves to amortize allocation to the extent possible.
utf8_state: RefCell<Utf8State>,
/// State used for arranging character classes in reverse into a trie.
trie_state: RefCell<RangeTrie>,
/// State used for caching common suffixes when compiling reverse UTF-8
/// automata (for Unicode character classes).
utf8_suffix: RefCell<Utf8SuffixMap>,
}
impl Compiler {
/// Create a new NFA builder with its default configuration.
pub fn new() -> Compiler {
Compiler {
parser: ParserBuilder::new(),
config: Config::default(),
builder: RefCell::new(Builder::new()),
utf8_state: RefCell::new(Utf8State::new()),
trie_state: RefCell::new(RangeTrie::new()),
utf8_suffix: RefCell::new(Utf8SuffixMap::new(1000)),
}
}
/// Compile the given regular expression pattern into an NFA.
///
/// If there was a problem parsing the regex, then that error is returned.
///
/// Otherwise, if there was a problem building the NFA, then an error is
/// returned. The only error that can occur is if the compiled regex would
/// exceed the size limits configured on this builder, or if any part of
/// the NFA would exceed the integer representations used. (For example,
/// too many states might plausibly occur on a 16-bit target.)
///
/// # Example
///
/// ```
/// use regex_automata::{nfa::thompson::{NFA, pikevm::PikeVM}, Match};
///
/// let config = NFA::config().nfa_size_limit(Some(1_000));
/// let nfa = NFA::compiler().configure(config).build(r"(?-u)\w")?;
///
/// let re = PikeVM::new_from_nfa(nfa)?;
/// let mut cache = re.create_cache();
/// let mut caps = re.create_captures();
/// let expected = Some(Match::must(0, 3..4));
/// re.captures(&mut cache, "!@#A#@!", &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn build(&self, pattern: &str) -> Result<NFA, BuildError> {
self.build_many(&[pattern])
}
/// Compile the given regular expression patterns into a single NFA.
///
/// When matches are returned, the pattern ID corresponds to the index of
/// the pattern in the slice given.
///
/// # Example
///
/// ```
/// use regex_automata::{nfa::thompson::{NFA, pikevm::PikeVM}, Match};
///
/// let config = NFA::config().nfa_size_limit(Some(1_000));
/// let nfa = NFA::compiler().configure(config).build_many(&[
/// r"(?-u)\s",
/// r"(?-u)\w",
/// ])?;
///
/// let re = PikeVM::new_from_nfa(nfa)?;
/// let mut cache = re.create_cache();
/// let mut caps = re.create_captures();
/// let expected = Some(Match::must(1, 1..2));
/// re.captures(&mut cache, "!A! !A!", &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn build_many<P: AsRef<str>>(
&self,
patterns: &[P],
) -> Result<NFA, BuildError> {
let mut hirs = vec![];
for p in patterns {
hirs.push(
self.parser
.build()
.parse(p.as_ref())
.map_err(BuildError::syntax)?,
);
debug!("parsed: {:?}", p.as_ref());
}
self.build_many_from_hir(&hirs)
}
/// Compile the given high level intermediate representation of a regular
/// expression into an NFA.
///
/// If there was a problem building the NFA, then an error is returned. The
/// only error that can occur is if the compiled regex would exceed the
/// size limits configured on this builder, or if any part of the NFA would
/// exceed the integer representations used. (For example, too many states
/// might plausibly occur on a 16-bit target.)
///
/// # Example
///
/// ```
/// use regex_automata::{nfa::thompson::{NFA, pikevm::PikeVM}, Match};
/// use regex_syntax::hir::{Hir, Class, ClassBytes, ClassBytesRange};
///
/// let hir = Hir::class(Class::Bytes(ClassBytes::new(vec![
/// ClassBytesRange::new(b'0', b'9'),
/// ClassBytesRange::new(b'A', b'Z'),
/// ClassBytesRange::new(b'_', b'_'),
/// ClassBytesRange::new(b'a', b'z'),
/// ])));
///
/// let config = NFA::config().nfa_size_limit(Some(1_000));
/// let nfa = NFA::compiler().configure(config).build_from_hir(&hir)?;
///
/// let re = PikeVM::new_from_nfa(nfa)?;
/// let mut cache = re.create_cache();
/// let mut caps = re.create_captures();
/// let expected = Some(Match::must(0, 3..4));
/// re.captures(&mut cache, "!@#A#@!", &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn build_from_hir(&self, expr: &Hir) -> Result<NFA, BuildError> {
self.build_many_from_hir(&[expr])
}
/// Compile the given high level intermediate representations of regular
/// expressions into a single NFA.
///
/// When matches are returned, the pattern ID corresponds to the index of
/// the pattern in the slice given.
///
/// # Example
///
/// ```
/// use regex_automata::{nfa::thompson::{NFA, pikevm::PikeVM}, Match};
/// use regex_syntax::hir::{Hir, Class, ClassBytes, ClassBytesRange};
///
/// let hirs = &[
/// Hir::class(Class::Bytes(ClassBytes::new(vec![
/// ClassBytesRange::new(b'\t', b'\r'),
/// ClassBytesRange::new(b' ', b' '),
/// ]))),
/// Hir::class(Class::Bytes(ClassBytes::new(vec![
/// ClassBytesRange::new(b'0', b'9'),
/// ClassBytesRange::new(b'A', b'Z'),
/// ClassBytesRange::new(b'_', b'_'),
/// ClassBytesRange::new(b'a', b'z'),
/// ]))),
/// ];
///
/// let config = NFA::config().nfa_size_limit(Some(1_000));
/// let nfa = NFA::compiler().configure(config).build_many_from_hir(hirs)?;
///
/// let re = PikeVM::new_from_nfa(nfa)?;
/// let mut cache = re.create_cache();
/// let mut caps = re.create_captures();
/// let expected = Some(Match::must(1, 1..2));
/// re.captures(&mut cache, "!A! !A!", &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn build_many_from_hir<H: Borrow<Hir>>(
&self,
exprs: &[H],
) -> Result<NFA, BuildError> {
self.compile(exprs)
}
/// Apply the given NFA configuration options to this builder.
///
/// # Example
///
/// ```
/// use regex_automata::nfa::thompson::NFA;
///
/// let config = NFA::config().nfa_size_limit(Some(1_000));
/// let nfa = NFA::compiler().configure(config).build(r"(?-u)\w")?;
/// assert_eq!(nfa.pattern_len(), 1);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn configure(&mut self, config: Config) -> &mut Compiler {
self.config = self.config.overwrite(config);
self
}
/// Set the syntax configuration for this builder using
/// [`syntax::Config`](crate::util::syntax::Config).
///
/// This permits setting things like case insensitivity, Unicode and multi
/// line mode.
///
/// This syntax configuration only applies when an NFA is built directly
/// from a pattern string. If an NFA is built from an HIR, then all syntax
/// settings are ignored.
///
/// # Example
///
/// ```
/// use regex_automata::{nfa::thompson::NFA, util::syntax};
///
/// let syntax_config = syntax::Config::new().unicode(false);
/// let nfa = NFA::compiler().syntax(syntax_config).build(r"\w")?;
/// // If Unicode were enabled, the number of states would be much bigger.
/// assert!(nfa.states().len() < 15);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn syntax(
&mut self,
config: crate::util::syntax::Config,
) -> &mut Compiler {
config.apply(&mut self.parser);
self
}
}
impl Compiler {
/// Compile the sequence of HIR expressions given. Pattern IDs are
/// allocated starting from 0, in correspondence with the slice given.
///
/// It is legal to provide an empty slice. In that case, the NFA returned
/// has no patterns and will never match anything.
fn compile<H: Borrow<Hir>>(&self, exprs: &[H]) -> Result<NFA, BuildError> {
if exprs.len() > PatternID::LIMIT {
return Err(BuildError::too_many_patterns(exprs.len()));
}
if self.config.get_reverse()
&& self.config.get_which_captures().is_any()
{
return Err(BuildError::unsupported_captures());
}
self.builder.borrow_mut().clear();
self.builder.borrow_mut().set_utf8(self.config.get_utf8());
self.builder.borrow_mut().set_reverse(self.config.get_reverse());
self.builder
.borrow_mut()
.set_look_matcher(self.config.get_look_matcher());
self.builder
.borrow_mut()
.set_size_limit(self.config.get_nfa_size_limit())?;
// We always add an unanchored prefix unless we were specifically told
// not to (for tests only), or if we know that the regex is anchored
// for all matches. When an unanchored prefix is not added, then the
// NFA's anchored and unanchored start states are equivalent.
let all_anchored = exprs.iter().all(|e| {
let props = e.borrow().properties();
if self.config.get_reverse() {
props.look_set_suffix().contains(hir::Look::End)
} else {
props.look_set_prefix().contains(hir::Look::Start)
}
});
let anchored = !self.config.get_unanchored_prefix() || all_anchored;
let unanchored_prefix = if anchored {
self.c_empty()?
} else {
self.c_at_least(&Hir::dot(hir::Dot::AnyByte), false, 0)?
};
let compiled = self.c_alt_iter(exprs.iter().map(|e| {
let _ = self.start_pattern()?;
let one = self.c_cap(0, None, e.borrow())?;
let match_state_id = self.add_match()?;
self.patch(one.end, match_state_id)?;
let _ = self.finish_pattern(one.start)?;
Ok(ThompsonRef { start: one.start, end: match_state_id })
}))?;
self.patch(unanchored_prefix.end, compiled.start)?;
let nfa = self
.builder
.borrow_mut()
.build(compiled.start, unanchored_prefix.start)?;
debug!("HIR-to-NFA compilation complete, config: {:?}", self.config);
Ok(nfa)
}
/// Compile an arbitrary HIR expression.
fn c(&self, expr: &Hir) -> Result<ThompsonRef, BuildError> {
use regex_syntax::hir::{Class, HirKind::*};
match *expr.kind() {
Empty => self.c_empty(),
Literal(hir::Literal(ref bytes)) => self.c_literal(bytes),
Class(Class::Bytes(ref c)) => self.c_byte_class(c),
Class(Class::Unicode(ref c)) => self.c_unicode_class(c),
Look(ref look) => self.c_look(look),
Repetition(ref rep) => self.c_repetition(rep),
Capture(ref c) => self.c_cap(c.index, c.name.as_deref(), &c.sub),
Concat(ref es) => self.c_concat(es.iter().map(|e| self.c(e))),
Alternation(ref es) => self.c_alt_slice(es),
}
}
/// Compile a concatenation of the sub-expressions yielded by the given
/// iterator. If the iterator yields no elements, then this compiles down
/// to an "empty" state that always matches.
///
/// If the compiler is in reverse mode, then the expressions given are
/// automatically compiled in reverse.
fn c_concat<I>(&self, mut it: I) -> Result<ThompsonRef, BuildError>
where
I: DoubleEndedIterator<Item = Result<ThompsonRef, BuildError>>,
{
let first = if self.is_reverse() { it.next_back() } else { it.next() };
let ThompsonRef { start, mut end } = match first {
Some(result) => result?,
None => return self.c_empty(),
};
loop {
let next =
if self.is_reverse() { it.next_back() } else { it.next() };
let compiled = match next {
Some(result) => result?,
None => break,
};
self.patch(end, compiled.start)?;
end = compiled.end;
}
Ok(ThompsonRef { start, end })
}
/// Compile an alternation of the given HIR values.
///
/// This is like 'c_alt_iter', but it accepts a slice of HIR values instead
/// of an iterator of compiled NFA subgraphs. The point of accepting a
/// slice here is that it opens up some optimization opportunities. For
/// example, if all of the HIR values are literals, then this routine might
/// re-shuffle them to make NFA epsilon closures substantially faster.
fn c_alt_slice(&self, exprs: &[Hir]) -> Result<ThompsonRef, BuildError> {
// self.c_alt_iter(exprs.iter().map(|e| self.c(e)))
let literal_count = exprs
.iter()
.filter(|e| {
matches!(*e.kind(), hir::HirKind::Literal(hir::Literal(_)))
})
.count();
if literal_count <= 1 || literal_count < exprs.len() {
return self.c_alt_iter(exprs.iter().map(|e| self.c(e)));
}
let mut trie = if self.is_reverse() {
LiteralTrie::reverse()
} else {
LiteralTrie::forward()
};
for expr in exprs.iter() {
let literal = match *expr.kind() {
hir::HirKind::Literal(hir::Literal(ref bytes)) => bytes,
_ => unreachable!(),
};
trie.add(literal)?;
}
trie.compile(&mut self.builder.borrow_mut())
}
/// Compile an alternation, where each element yielded by the given
/// iterator represents an item in the alternation. If the iterator yields
/// no elements, then this compiles down to a "fail" state.
///
/// In an alternation, expressions appearing earlier are "preferred" at
/// match time over expressions appearing later. At least, this is true
/// when using "leftmost first" match semantics. (If "leftmost longest" are
/// ever added in the future, then this preference order of priority would
/// not apply in that mode.)
fn c_alt_iter<I>(&self, mut it: I) -> Result<ThompsonRef, BuildError>
where
I: Iterator<Item = Result<ThompsonRef, BuildError>>,
{
let first = match it.next() {
None => return self.c_fail(),
Some(result) => result?,
};
let second = match it.next() {
None => return Ok(first),
Some(result) => result?,
};
let union = self.add_union()?;
let end = self.add_empty()?;
self.patch(union, first.start)?;
self.patch(first.end, end)?;
self.patch(union, second.start)?;
self.patch(second.end, end)?;
for result in it {
let compiled = result?;
self.patch(union, compiled.start)?;
self.patch(compiled.end, end)?;
}
Ok(ThompsonRef { start: union, end })
}
/// Compile the given capture sub-expression. `expr` should be the
/// sub-expression contained inside the capture. If "capture" states are
/// enabled, then they are added as appropriate.
///
/// This accepts the pieces of a capture instead of a `hir::Capture` so
/// that it's easy to manufacture a "fake" group when necessary, e.g., for
/// adding the entire pattern as if it were a group in order to create
/// appropriate "capture" states in the NFA.
fn c_cap(
&self,
index: u32,
name: Option<&str>,
expr: &Hir,
) -> Result<ThompsonRef, BuildError> {
match self.config.get_which_captures() {
// No capture states means we always skip them.
WhichCaptures::None => return self.c(expr),
// Implicit captures states means we only add when index==0 since
// index==0 implies the group is implicit.
WhichCaptures::Implicit if index > 0 => return self.c(expr),
_ => {}
}
let start = self.add_capture_start(index, name)?;
let inner = self.c(expr)?;
let end = self.add_capture_end(index)?;
self.patch(start, inner.start)?;
self.patch(inner.end, end)?;
Ok(ThompsonRef { start, end })
}
/// Compile the given repetition expression. This handles all types of
/// repetitions and greediness.
fn c_repetition(
&self,
rep: &hir::Repetition,
) -> Result<ThompsonRef, BuildError> {
match (rep.min, rep.max) {
(0, Some(1)) => self.c_zero_or_one(&rep.sub, rep.greedy),
(min, None) => self.c_at_least(&rep.sub, rep.greedy, min),
(min, Some(max)) if min == max => self.c_exactly(&rep.sub, min),
(min, Some(max)) => self.c_bounded(&rep.sub, rep.greedy, min, max),
}
}
/// Compile the given expression such that it matches at least `min` times,
/// but no more than `max` times.
///
/// When `greedy` is true, then the preference is for the expression to
/// match as much as possible. Otherwise, it will match as little as
/// possible.
fn c_bounded(
&self,
expr: &Hir,
greedy: bool,
min: u32,
max: u32,
) -> Result<ThompsonRef, BuildError> {
let prefix = self.c_exactly(expr, min)?;
if min == max {
return Ok(prefix);
}
// It is tempting here to compile the rest here as a concatenation
// of zero-or-one matches. i.e., for `a{2,5}`, compile it as if it
// were `aaa?a?a?`. The problem here is that it leads to this program:
//
// >000000: 61 => 01
// 000001: 61 => 02
// 000002: union(03, 04)
// 000003: 61 => 04
// 000004: union(05, 06)
// 000005: 61 => 06
// 000006: union(07, 08)
// 000007: 61 => 08
// 000008: MATCH
//
// And effectively, once you hit state 2, the epsilon closure will
// include states 3, 5, 6, 7 and 8, which is quite a bit. It is better
// to instead compile it like so:
//
// >000000: 61 => 01
// 000001: 61 => 02
// 000002: union(03, 08)
// 000003: 61 => 04
// 000004: union(05, 08)
// 000005: 61 => 06
// 000006: union(07, 08)
// 000007: 61 => 08
// 000008: MATCH
//
// So that the epsilon closure of state 2 is now just 3 and 8.
let empty = self.add_empty()?;
let mut prev_end = prefix.end;
for _ in min..max {
let union = if greedy {
self.add_union()
} else {
self.add_union_reverse()
}?;
let compiled = self.c(expr)?;
self.patch(prev_end, union)?;
self.patch(union, compiled.start)?;
self.patch(union, empty)?;
prev_end = compiled.end;
}
self.patch(prev_end, empty)?;
Ok(ThompsonRef { start: prefix.start, end: empty })
}
/// Compile the given expression such that it may be matched `n` or more
/// times, where `n` can be any integer. (Although a particularly large
/// integer is likely to run afoul of any configured size limits.)
///
/// When `greedy` is true, then the preference is for the expression to
/// match as much as possible. Otherwise, it will match as little as
/// possible.
fn c_at_least(
&self,
expr: &Hir,
greedy: bool,
n: u32,
) -> Result<ThompsonRef, BuildError> {
if n == 0 {
// When the expression cannot match the empty string, then we
// can get away with something much simpler: just one 'alt'
// instruction that optionally repeats itself. But if the expr
// can match the empty string... see below.
if expr.properties().minimum_len().map_or(false, |len| len > 0) {
let union = if greedy {
self.add_union()
} else {
self.add_union_reverse()
}?;
let compiled = self.c(expr)?;
self.patch(union, compiled.start)?;
self.patch(compiled.end, union)?;
return Ok(ThompsonRef { start: union, end: union });
}
// What's going on here? Shouldn't x* be simpler than this? It
// turns out that when implementing leftmost-first (Perl-like)
// match semantics, x* results in an incorrect preference order
// when computing the transitive closure of states if and only if
// 'x' can match the empty string. So instead, we compile x* as
// (x+)?, which preserves the correct preference order.
//
// See: https://github.com/rust-lang/regex/issues/779
let compiled = self.c(expr)?;
let plus = if greedy {
self.add_union()
} else {
self.add_union_reverse()
}?;
self.patch(compiled.end, plus)?;
self.patch(plus, compiled.start)?;
let question = if greedy {
self.add_union()
} else {
self.add_union_reverse()
}?;
let empty = self.add_empty()?;
self.patch(question, compiled.start)?;
self.patch(question, empty)?;
self.patch(plus, empty)?;
Ok(ThompsonRef { start: question, end: empty })
} else if n == 1 {
let compiled = self.c(expr)?;
let union = if greedy {
self.add_union()
} else {
self.add_union_reverse()
}?;
self.patch(compiled.end, union)?;
self.patch(union, compiled.start)?;
Ok(ThompsonRef { start: compiled.start, end: union })
} else {
let prefix = self.c_exactly(expr, n - 1)?;
let last = self.c(expr)?;
let union = if greedy {
self.add_union()
} else {
self.add_union_reverse()
}?;
self.patch(prefix.end, last.start)?;
self.patch(last.end, union)?;
self.patch(union, last.start)?;
Ok(ThompsonRef { start: prefix.start, end: union })
}
}
/// Compile the given expression such that it may be matched zero or one
/// times.
///
/// When `greedy` is true, then the preference is for the expression to
/// match as much as possible. Otherwise, it will match as little as
/// possible.
fn c_zero_or_one(
&self,
expr: &Hir,
greedy: bool,
) -> Result<ThompsonRef, BuildError> {
let union =
if greedy { self.add_union() } else { self.add_union_reverse() }?;
let compiled = self.c(expr)?;
let empty = self.add_empty()?;
self.patch(union, compiled.start)?;
self.patch(union, empty)?;
self.patch(compiled.end, empty)?;
Ok(ThompsonRef { start: union, end: empty })
}
/// Compile the given HIR expression exactly `n` times.
fn c_exactly(
&self,
expr: &Hir,
n: u32,
) -> Result<ThompsonRef, BuildError> {
let it = (0..n).map(|_| self.c(expr));
self.c_concat(it)
}
/// Compile the given byte oriented character class.
///
/// This uses "sparse" states to represent an alternation between ranges in
/// this character class. We can use "sparse" states instead of stitching
/// together a "union" state because all ranges in a character class have
/// equal priority *and* are non-overlapping (thus, only one can match, so
/// there's never a question of priority in the first place). This saves a
/// fair bit of overhead when traversing an NFA.
///
/// This routine compiles an empty character class into a "fail" state.
fn c_byte_class(
&self,
cls: &hir::ClassBytes,
) -> Result<ThompsonRef, BuildError> {
let end = self.add_empty()?;
let mut trans = Vec::with_capacity(cls.ranges().len());
for r in cls.iter() {
trans.push(Transition {
start: r.start(),
end: r.end(),
next: end,
});
}
Ok(ThompsonRef { start: self.add_sparse(trans)?, end })
}
/// Compile the given Unicode character class.
///
/// This routine specifically tries to use various types of compression,
/// since UTF-8 automata of large classes can get quite large. The specific
/// type of compression used depends on forward vs reverse compilation, and
/// whether NFA shrinking is enabled or not.
///
/// Aside from repetitions causing lots of repeat group, this is like the
/// single most expensive part of regex compilation. Therefore, a large part
/// of the expense of compilation may be reduce by disabling Unicode in the
/// pattern.
///
/// This routine compiles an empty character class into a "fail" state.
fn c_unicode_class(
&self,
cls: &hir::ClassUnicode,
) -> Result<ThompsonRef, BuildError> {
// If all we have are ASCII ranges wrapped in a Unicode package, then
// there is zero reason to bring out the big guns. We can fit all ASCII
// ranges within a single sparse state.
if cls.is_ascii() {
let end = self.add_empty()?;
let mut trans = Vec::with_capacity(cls.ranges().len());
for r in cls.iter() {
// The unwraps below are OK because we've verified that this
// class only contains ASCII codepoints.
trans.push(Transition {
// FIXME(1.59): use the 'TryFrom<char> for u8' impl.
start: u8::try_from(u32::from(r.start())).unwrap(),
end: u8::try_from(u32::from(r.end())).unwrap(),
next: end,
});
}
Ok(ThompsonRef { start: self.add_sparse(trans)?, end })
} else if self.is_reverse() {
if !self.config.get_shrink() {
// When we don't want to spend the extra time shrinking, we
// compile the UTF-8 automaton in reverse using something like
// the "naive" approach, but will attempt to re-use common
// suffixes.
self.c_unicode_class_reverse_with_suffix(cls)
} else {
// When we want to shrink our NFA for reverse UTF-8 automata,
// we cannot feed UTF-8 sequences directly to the UTF-8
// compiler, since the UTF-8 compiler requires all sequences
// to be lexicographically sorted. Instead, we organize our
// sequences into a range trie, which can then output our
// sequences in the correct order. Unfortunately, building the
// range trie is fairly expensive (but not nearly as expensive
// as building a DFA). Hence the reason why the 'shrink' option
// exists, so that this path can be toggled off. For example,
// we might want to turn this off if we know we won't be
// compiling a DFA.
let mut trie = self.trie_state.borrow_mut();
trie.clear();
for rng in cls.iter() {
for mut seq in Utf8Sequences::new(rng.start(), rng.end()) {
seq.reverse();
trie.insert(seq.as_slice());
}
}
let mut builder = self.builder.borrow_mut();
let mut utf8_state = self.utf8_state.borrow_mut();
let mut utf8c =
Utf8Compiler::new(&mut *builder, &mut *utf8_state)?;
trie.iter(|seq| {
utf8c.add(&seq)?;
Ok(())
})?;
utf8c.finish()
}
} else {
// In the forward direction, we always shrink our UTF-8 automata
// because we can stream it right into the UTF-8 compiler. There
// is almost no downside (in either memory or time) to using this
// approach.
let mut builder = self.builder.borrow_mut();
let mut utf8_state = self.utf8_state.borrow_mut();
let mut utf8c =
Utf8Compiler::new(&mut *builder, &mut *utf8_state)?;
for rng in cls.iter() {
for seq in Utf8Sequences::new(rng.start(), rng.end()) {
utf8c.add(seq.as_slice())?;
}
}
utf8c.finish()
}
// For reference, the code below is the "naive" version of compiling a
// UTF-8 automaton. It is deliciously simple (and works for both the
// forward and reverse cases), but will unfortunately produce very
// large NFAs. When compiling a forward automaton, the size difference
// can sometimes be an order of magnitude. For example, the '\w' regex
// will generate about ~3000 NFA states using the naive approach below,
// but only 283 states when using the approach above. This is because
// the approach above actually compiles a *minimal* (or near minimal,
// because of the bounded hashmap for reusing equivalent states) UTF-8
// automaton.
//
// The code below is kept as a reference point in order to make it
// easier to understand the higher level goal here. Although, it will
// almost certainly bit-rot, so keep that in mind. Also, if you try to
// use it, some of the tests in this module will fail because they look
// for terser byte code produce by the more optimized handling above.
// But the integration test suite should still pass.
//
// One good example of the substantial difference this can make is to
// compare and contrast performance of the Pike VM when the code below
// is active vs the code above. Here's an example to try:
//
// regex-cli find match pikevm -b -p '(?m)^\w{20}' non-ascii-file
//
// With Unicode classes generated below, this search takes about 45s on
// my machine. But with the compressed version above, the search takes
// only around 1.4s. The NFA is also 20% smaller. This is in part due
// to the compression, but also because of the utilization of 'sparse'
// NFA states. They lead to much less state shuffling during the NFA
// search.
/*
let it = cls
.iter()
.flat_map(|rng| Utf8Sequences::new(rng.start(), rng.end()))
.map(|seq| {
let it = seq
.as_slice()
.iter()
.map(|rng| self.c_range(rng.start, rng.end));
self.c_concat(it)
});
self.c_alt_iter(it)
*/
}
/// Compile the given Unicode character class in reverse with suffix
/// caching.
///
/// This is a "quick" way to compile large Unicode classes into reverse
/// UTF-8 automata while doing a small amount of compression on that
/// automata by reusing common suffixes.
///
/// A more comprehensive compression scheme can be accomplished by using
/// a range trie to efficiently sort a reverse sequence of UTF-8 byte
/// rqanges, and then use Daciuk's algorithm via `Utf8Compiler`.
///
/// This is the technique used when "NFA shrinking" is disabled.
///
/// (This also tries to use "sparse" states where possible, just like
/// `c_byte_class` does.)
fn c_unicode_class_reverse_with_suffix(
&self,
cls: &hir::ClassUnicode,
) -> Result<ThompsonRef, BuildError> {
// N.B. It would likely be better to cache common *prefixes* in the
// reverse direction, but it's not quite clear how to do that. The
// advantage of caching suffixes is that it does give us a win, and
// has a very small additional overhead.
let mut cache = self.utf8_suffix.borrow_mut();
cache.clear();
let union = self.add_union()?;
let alt_end = self.add_empty()?;
for urng in cls.iter() {
for seq in Utf8Sequences::new(urng.start(), urng.end()) {
let mut end = alt_end;
for brng in seq.as_slice() {
let key = Utf8SuffixKey {
from: end,
start: brng.start,
end: brng.end,
};
let hash = cache.hash(&key);
if let Some(id) = cache.get(&key, hash) {
end = id;
continue;
}
let compiled = self.c_range(brng.start, brng.end)?;
self.patch(compiled.end, end)?;
end = compiled.start;
cache.set(key, hash, end);
}
self.patch(union, end)?;
}
}
Ok(ThompsonRef { start: union, end: alt_end })
}
/// Compile the given HIR look-around assertion to an NFA look-around
/// assertion.
fn c_look(&self, anchor: &hir::Look) -> Result<ThompsonRef, BuildError> {
let look = match *anchor {
hir::Look::Start => Look::Start,
hir::Look::End => Look::End,
hir::Look::StartLF => Look::StartLF,
hir::Look::EndLF => Look::EndLF,
hir::Look::StartCRLF => Look::StartCRLF,
hir::Look::EndCRLF => Look::EndCRLF,
hir::Look::WordAscii => Look::WordAscii,
hir::Look::WordAsciiNegate => Look::WordAsciiNegate,
hir::Look::WordUnicode => Look::WordUnicode,
hir::Look::WordUnicodeNegate => Look::WordUnicodeNegate,
hir::Look::WordStartAscii => Look::WordStartAscii,
hir::Look::WordEndAscii => Look::WordEndAscii,
hir::Look::WordStartUnicode => Look::WordStartUnicode,
hir::Look::WordEndUnicode => Look::WordEndUnicode,
hir::Look::WordStartHalfAscii => Look::WordStartHalfAscii,
hir::Look::WordEndHalfAscii => Look::WordEndHalfAscii,
hir::Look::WordStartHalfUnicode => Look::WordStartHalfUnicode,
hir::Look::WordEndHalfUnicode => Look::WordEndHalfUnicode,
};
let id = self.add_look(look)?;
Ok(ThompsonRef { start: id, end: id })
}
/// Compile the given byte string to a concatenation of bytes.
fn c_literal(&self, bytes: &[u8]) -> Result<ThompsonRef, BuildError> {
self.c_concat(bytes.iter().copied().map(|b| self.c_range(b, b)))
}
/// Compile a "range" state with one transition that may only be followed
/// if the input byte is in the (inclusive) range given.
///
/// Both the `start` and `end` locations point to the state created.
/// Callers will likely want to keep the `start`, but patch the `end` to
/// point to some other state.
fn c_range(&self, start: u8, end: u8) -> Result<ThompsonRef, BuildError> {
let id = self.add_range(start, end)?;
Ok(ThompsonRef { start: id, end: id })
}
/// Compile an "empty" state with one unconditional epsilon transition.
///
/// Both the `start` and `end` locations point to the state created.
/// Callers will likely want to keep the `start`, but patch the `end` to
/// point to some other state.
fn c_empty(&self) -> Result<ThompsonRef, BuildError> {
let id = self.add_empty()?;
Ok(ThompsonRef { start: id, end: id })
}
/// Compile a "fail" state that can never have any outgoing transitions.
fn c_fail(&self) -> Result<ThompsonRef, BuildError> {
let id = self.add_fail()?;
Ok(ThompsonRef { start: id, end: id })
}
// The below helpers are meant to be simple wrappers around the
// corresponding Builder methods. For the most part, they let us write
// 'self.add_foo()' instead of 'self.builder.borrow_mut().add_foo()', where
// the latter is a mouthful. Some of the methods do inject a little bit
// of extra logic. e.g., Flipping look-around operators when compiling in
// reverse mode.
fn patch(&self, from: StateID, to: StateID) -> Result<(), BuildError> {
self.builder.borrow_mut().patch(from, to)
}
fn start_pattern(&self) -> Result<PatternID, BuildError> {
self.builder.borrow_mut().start_pattern()
}
fn finish_pattern(
&self,
start_id: StateID,
) -> Result<PatternID, BuildError> {
self.builder.borrow_mut().finish_pattern(start_id)
}
fn add_empty(&self) -> Result<StateID, BuildError> {
self.builder.borrow_mut().add_empty()
}
fn add_range(&self, start: u8, end: u8) -> Result<StateID, BuildError> {
self.builder.borrow_mut().add_range(Transition {
start,
end,
next: StateID::ZERO,
})
}
fn add_sparse(
&self,
ranges: Vec<Transition>,
) -> Result<StateID, BuildError> {
self.builder.borrow_mut().add_sparse(ranges)
}
fn add_look(&self, mut look: Look) -> Result<StateID, BuildError> {
if self.is_reverse() {
look = look.reversed();
}
self.builder.borrow_mut().add_look(StateID::ZERO, look)
}
fn add_union(&self) -> Result<StateID, BuildError> {
self.builder.borrow_mut().add_union(vec![])
}
fn add_union_reverse(&self) -> Result<StateID, BuildError> {
self.builder.borrow_mut().add_union_reverse(vec![])
}
fn add_capture_start(
&self,
capture_index: u32,
name: Option<&str>,
) -> Result<StateID, BuildError> {
let name = name.map(|n| Arc::from(n));
self.builder.borrow_mut().add_capture_start(
StateID::ZERO,
capture_index,
name,
)
}
fn add_capture_end(
&self,
capture_index: u32,
) -> Result<StateID, BuildError> {
self.builder.borrow_mut().add_capture_end(StateID::ZERO, capture_index)
}
fn add_fail(&self) -> Result<StateID, BuildError> {
self.builder.borrow_mut().add_fail()
}
fn add_match(&self) -> Result<StateID, BuildError> {
self.builder.borrow_mut().add_match()
}
fn is_reverse(&self) -> bool {
self.config.get_reverse()
}
}
/// A value that represents the result of compiling a sub-expression of a
/// regex's HIR. Specifically, this represents a sub-graph of the NFA that
/// has an initial state at `start` and a final state at `end`.
#[derive(Clone, Copy, Debug)]
pub(crate) struct ThompsonRef {
pub(crate) start: StateID,
pub(crate) end: StateID,
}
/// A UTF-8 compiler based on Daciuk's algorithm for compilining minimal DFAs
/// from a lexicographically sorted sequence of strings in linear time.
///
/// The trick here is that any Unicode codepoint range can be converted to
/// a sequence of byte ranges that form a UTF-8 automaton. Connecting them
/// together via an alternation is trivial, and indeed, it works. However,
/// there is a lot of redundant structure in many UTF-8 automatons. Since our
/// UTF-8 ranges are in lexicographic order, we can use Daciuk's algorithm
/// to build nearly minimal DFAs in linear time. (They are guaranteed to be
/// minimal because we use a bounded cache of previously build DFA states.)
///
/// The drawback is that this sadly doesn't work for reverse automata, since
/// the ranges are no longer in lexicographic order. For that, we invented the
/// range trie (which gets its own module). Once a range trie is built, we then
/// use this same Utf8Compiler to build a reverse UTF-8 automaton.
///
/// The high level idea is described here:
/// https://blog.burntsushi.net/transducers/#finite-state-machines-as-data-structures
///
/// There is also another implementation of this in the `fst` crate.
#[derive(Debug)]
struct Utf8Compiler<'a> {
builder: &'a mut Builder,
state: &'a mut Utf8State,
target: StateID,
}
#[derive(Clone, Debug)]
struct Utf8State {
compiled: Utf8BoundedMap,
uncompiled: Vec<Utf8Node>,
}
#[derive(Clone, Debug)]
struct Utf8Node {
trans: Vec<Transition>,
last: Option<Utf8LastTransition>,
}
#[derive(Clone, Debug)]
struct Utf8LastTransition {
start: u8,
end: u8,
}
impl Utf8State {
fn new() -> Utf8State {
Utf8State { compiled: Utf8BoundedMap::new(10_000), uncompiled: vec![] }
}
fn clear(&mut self) {
self.compiled.clear();
self.uncompiled.clear();
}
}
impl<'a> Utf8Compiler<'a> {
fn new(
builder: &'a mut Builder,
state: &'a mut Utf8State,
) -> Result<Utf8Compiler<'a>, BuildError> {
let target = builder.add_empty()?;
state.clear();
let mut utf8c = Utf8Compiler { builder, state, target };
utf8c.add_empty();
Ok(utf8c)
}
fn finish(&mut self) -> Result<ThompsonRef, BuildError> {
self.compile_from(0)?;
let node = self.pop_root();
let start = self.compile(node)?;
Ok(ThompsonRef { start, end: self.target })
}
fn add(&mut self, ranges: &[Utf8Range]) -> Result<(), BuildError> {
let prefix_len = ranges
.iter()
.zip(&self.state.uncompiled)
.take_while(|&(range, node)| {
node.last.as_ref().map_or(false, |t| {
(t.start, t.end) == (range.start, range.end)
})
})
.count();
assert!(prefix_len < ranges.len());
self.compile_from(prefix_len)?;
self.add_suffix(&ranges[prefix_len..]);
Ok(())
}
fn compile_from(&mut self, from: usize) -> Result<(), BuildError> {
let mut next = self.target;
while from + 1 < self.state.uncompiled.len() {
let node = self.pop_freeze(next);
next = self.compile(node)?;
}
self.top_last_freeze(next);
Ok(())
}
fn compile(
&mut self,
node: Vec<Transition>,
) -> Result<StateID, BuildError> {
let hash = self.state.compiled.hash(&node);
if let Some(id) = self.state.compiled.get(&node, hash) {
return Ok(id);
}
let id = self.builder.add_sparse(node.clone())?;
self.state.compiled.set(node, hash, id);
Ok(id)
}
fn add_suffix(&mut self, ranges: &[Utf8Range]) {
assert!(!ranges.is_empty());
let last = self
.state
.uncompiled
.len()
.checked_sub(1)
.expect("non-empty nodes");
assert!(self.state.uncompiled[last].last.is_none());
self.state.uncompiled[last].last = Some(Utf8LastTransition {
start: ranges[0].start,
end: ranges[0].end,
});
for r in &ranges[1..] {
self.state.uncompiled.push(Utf8Node {
trans: vec![],
last: Some(Utf8LastTransition { start: r.start, end: r.end }),
});
}
}
fn add_empty(&mut self) {
self.state.uncompiled.push(Utf8Node { trans: vec![], last: None });
}
fn pop_freeze(&mut self, next: StateID) -> Vec<Transition> {
let mut uncompiled = self.state.uncompiled.pop().unwrap();
uncompiled.set_last_transition(next);
uncompiled.trans
}
fn pop_root(&mut self) -> Vec<Transition> {
assert_eq!(self.state.uncompiled.len(), 1);
assert!(self.state.uncompiled[0].last.is_none());
self.state.uncompiled.pop().expect("non-empty nodes").trans
}
fn top_last_freeze(&mut self, next: StateID) {
let last = self
.state
.uncompiled
.len()
.checked_sub(1)
.expect("non-empty nodes");
self.state.uncompiled[last].set_last_transition(next);
}
}
impl Utf8Node {
fn set_last_transition(&mut self, next: StateID) {
if let Some(last) = self.last.take() {
self.trans.push(Transition {
start: last.start,
end: last.end,
next,
});
}
}
}
#[cfg(test)]
mod tests {
use alloc::vec;
use crate::{
nfa::thompson::{SparseTransitions, State},
util::primitives::SmallIndex,
};
use super::*;
fn build(pattern: &str) -> NFA {
NFA::compiler()
.configure(
NFA::config()
.which_captures(WhichCaptures::None)
.unanchored_prefix(false),
)
.build(pattern)
.unwrap()
}
fn pid(id: usize) -> PatternID {
PatternID::new(id).unwrap()
}
fn sid(id: usize) -> StateID {
StateID::new(id).unwrap()
}
fn s_byte(byte: u8, next: usize) -> State {
let next = sid(next);
let trans = Transition { start: byte, end: byte, next };
State::ByteRange { trans }
}
fn s_range(start: u8, end: u8, next: usize) -> State {
let next = sid(next);
let trans = Transition { start, end, next };
State::ByteRange { trans }
}
fn s_sparse(transitions: &[(u8, u8, usize)]) -> State {
let transitions = transitions
.iter()
.map(|&(start, end, next)| Transition {
start,
end,
next: sid(next),
})
.collect();
State::Sparse(SparseTransitions { transitions })
}
fn s_look(look: Look, next: usize) -> State {
let next = sid(next);
State::Look { look, next }
}
fn s_bin_union(alt1: usize, alt2: usize) -> State {
State::BinaryUnion { alt1: sid(alt1), alt2: sid(alt2) }
}
fn s_union(alts: &[usize]) -> State {
State::Union {
alternates: alts
.iter()
.map(|&id| sid(id))
.collect::<Vec<StateID>>()
.into_boxed_slice(),
}
}
fn s_cap(next: usize, pattern: usize, index: usize, slot: usize) -> State {
State::Capture {
next: sid(next),
pattern_id: pid(pattern),
group_index: SmallIndex::new(index).unwrap(),
slot: SmallIndex::new(slot).unwrap(),
}
}
fn s_fail() -> State {
State::Fail
}
fn s_match(id: usize) -> State {
State::Match { pattern_id: pid(id) }
}
// Test that building an unanchored NFA has an appropriate `(?s:.)*?`
// prefix.
#[test]
fn compile_unanchored_prefix() {
let nfa = NFA::compiler()
.configure(NFA::config().which_captures(WhichCaptures::None))
.build(r"a")
.unwrap();
assert_eq!(
nfa.states(),
&[
s_bin_union(2, 1),
s_range(0, 255, 0),
s_byte(b'a', 3),
s_match(0),
]
);
}
#[test]
fn compile_no_unanchored_prefix_with_start_anchor() {
let nfa = NFA::compiler()
.configure(NFA::config().which_captures(WhichCaptures::None))
.build(r"^a")
.unwrap();
assert_eq!(
nfa.states(),
&[s_look(Look::Start, 1), s_byte(b'a', 2), s_match(0)]
);
}
#[test]
fn compile_yes_unanchored_prefix_with_end_anchor() {
let nfa = NFA::compiler()
.configure(NFA::config().which_captures(WhichCaptures::None))
.build(r"a$")
.unwrap();
assert_eq!(
nfa.states(),
&[
s_bin_union(2, 1),
s_range(0, 255, 0),
s_byte(b'a', 3),
s_look(Look::End, 4),
s_match(0),
]
);
}
#[test]
fn compile_yes_reverse_unanchored_prefix_with_start_anchor() {
let nfa = NFA::compiler()
.configure(
NFA::config()
.reverse(true)
.which_captures(WhichCaptures::None),
)
.build(r"^a")
.unwrap();
assert_eq!(
nfa.states(),
&[
s_bin_union(2, 1),
s_range(0, 255, 0),
s_byte(b'a', 3),
// Anchors get flipped in a reverse automaton.
s_look(Look::End, 4),
s_match(0),
],
);
}
#[test]
fn compile_no_reverse_unanchored_prefix_with_end_anchor() {
let nfa = NFA::compiler()
.configure(
NFA::config()
.reverse(true)
.which_captures(WhichCaptures::None),
)
.build(r"a$")
.unwrap();
assert_eq!(
nfa.states(),
&[
// Anchors get flipped in a reverse automaton.
s_look(Look::Start, 1),
s_byte(b'a', 2),
s_match(0),
],
);
}
#[test]
fn compile_empty() {
assert_eq!(build("").states(), &[s_match(0),]);
}
#[test]
fn compile_literal() {
assert_eq!(build("a").states(), &[s_byte(b'a', 1), s_match(0),]);
assert_eq!(
build("ab").states(),
&[s_byte(b'a', 1), s_byte(b'b', 2), s_match(0),]
);
assert_eq!(
build("ā").states(),
&[s_byte(0xE2, 1), s_byte(0x98, 2), s_byte(0x83, 3), s_match(0)]
);
// Check that non-UTF-8 literals work.
let nfa = NFA::compiler()
.configure(
NFA::config()
.which_captures(WhichCaptures::None)
.unanchored_prefix(false),
)
.syntax(crate::util::syntax::Config::new().utf8(false))
.build(r"(?-u)\xFF")
.unwrap();
assert_eq!(nfa.states(), &[s_byte(b'\xFF', 1), s_match(0),]);
}
#[test]
fn compile_class_ascii() {
assert_eq!(
build(r"[a-z]").states(),
&[s_range(b'a', b'z', 1), s_match(0),]
);
assert_eq!(
build(r"[x-za-c]").states(),
&[s_sparse(&[(b'a', b'c', 1), (b'x', b'z', 1)]), s_match(0)]
);
}
#[test]
#[cfg(not(miri))]
fn compile_class_unicode() {
assert_eq!(
build(r"[\u03B1-\u03B4]").states(),
&[s_range(0xB1, 0xB4, 2), s_byte(0xCE, 0), s_match(0)]
);
assert_eq!(
build(r"[\u03B1-\u03B4\u{1F919}-\u{1F91E}]").states(),
&[
s_range(0xB1, 0xB4, 5),
s_range(0x99, 0x9E, 5),
s_byte(0xA4, 1),
s_byte(0x9F, 2),
s_sparse(&[(0xCE, 0xCE, 0), (0xF0, 0xF0, 3)]),
s_match(0),
]
);
assert_eq!(
build(r"[a-zā]").states(),
&[
s_byte(0x83, 3),
s_byte(0x98, 0),
s_sparse(&[(b'a', b'z', 3), (0xE2, 0xE2, 1)]),
s_match(0),
]
);
}
#[test]
fn compile_repetition() {
assert_eq!(
build(r"a?").states(),
&[s_bin_union(1, 2), s_byte(b'a', 2), s_match(0),]
);
assert_eq!(
build(r"a??").states(),
&[s_bin_union(2, 1), s_byte(b'a', 2), s_match(0),]
);
}
#[test]
fn compile_group() {
assert_eq!(
build(r"ab+").states(),
&[s_byte(b'a', 1), s_byte(b'b', 2), s_bin_union(1, 3), s_match(0)]
);
assert_eq!(
build(r"(ab)").states(),
&[s_byte(b'a', 1), s_byte(b'b', 2), s_match(0)]
);
assert_eq!(
build(r"(ab)+").states(),
&[s_byte(b'a', 1), s_byte(b'b', 2), s_bin_union(0, 3), s_match(0)]
);
}
#[test]
fn compile_alternation() {
assert_eq!(
build(r"a|b").states(),
&[s_range(b'a', b'b', 1), s_match(0)]
);
assert_eq!(
build(r"ab|cd").states(),
&[
s_byte(b'b', 3),
s_byte(b'd', 3),
s_sparse(&[(b'a', b'a', 0), (b'c', b'c', 1)]),
s_match(0)
],
);
assert_eq!(
build(r"|b").states(),
&[s_byte(b'b', 2), s_bin_union(2, 0), s_match(0)]
);
assert_eq!(
build(r"a|").states(),
&[s_byte(b'a', 2), s_bin_union(0, 2), s_match(0)]
);
}
// This tests the use of a non-binary union, i.e., a state with more than
// 2 unconditional epsilon transitions. The only place they tend to appear
// is in reverse NFAs when shrinking is disabled. Otherwise, 'binary-union'
// and 'sparse' tend to cover all other cases of alternation.
#[test]
fn compile_non_binary_union() {
let nfa = NFA::compiler()
.configure(
NFA::config()
.which_captures(WhichCaptures::None)
.reverse(true)
.shrink(false)
.unanchored_prefix(false),
)
.build(r"[\u1000\u2000\u3000]")
.unwrap();
assert_eq!(
nfa.states(),
&[
s_union(&[3, 6, 9]),
s_byte(0xE1, 10),
s_byte(0x80, 1),
s_byte(0x80, 2),
s_byte(0xE2, 10),
s_byte(0x80, 4),
s_byte(0x80, 5),
s_byte(0xE3, 10),
s_byte(0x80, 7),
s_byte(0x80, 8),
s_match(0),
]
);
}
#[test]
fn compile_many_start_pattern() {
let nfa = NFA::compiler()
.configure(
NFA::config()
.which_captures(WhichCaptures::None)
.unanchored_prefix(false),
)
.build_many(&["a", "b"])
.unwrap();
assert_eq!(
nfa.states(),
&[
s_byte(b'a', 1),
s_match(0),
s_byte(b'b', 3),
s_match(1),
s_bin_union(0, 2),
]
);
assert_eq!(nfa.start_anchored().as_usize(), 4);
assert_eq!(nfa.start_unanchored().as_usize(), 4);
// Test that the start states for each individual pattern are correct.
assert_eq!(nfa.start_pattern(pid(0)).unwrap(), sid(0));
assert_eq!(nfa.start_pattern(pid(1)).unwrap(), sid(2));
}
// This tests that our compiler can handle an empty character class. At the
// time of writing, the regex parser forbids it, so the only way to test it
// is to provide a hand written HIR.
#[test]
fn empty_class_bytes() {
use regex_syntax::hir::{Class, ClassBytes, Hir};
let hir = Hir::class(Class::Bytes(ClassBytes::new(vec![])));
let config = NFA::config()
.which_captures(WhichCaptures::None)
.unanchored_prefix(false);
let nfa =
NFA::compiler().configure(config).build_from_hir(&hir).unwrap();
assert_eq!(nfa.states(), &[s_fail(), s_match(0)]);
}
// Like empty_class_bytes, but for a Unicode class.
#[test]
fn empty_class_unicode() {
use regex_syntax::hir::{Class, ClassUnicode, Hir};
let hir = Hir::class(Class::Unicode(ClassUnicode::new(vec![])));
let config = NFA::config()
.which_captures(WhichCaptures::None)
.unanchored_prefix(false);
let nfa =
NFA::compiler().configure(config).build_from_hir(&hir).unwrap();
assert_eq!(nfa.states(), &[s_fail(), s_match(0)]);
}
#[test]
fn compile_captures_all() {
let nfa = NFA::compiler()
.configure(
NFA::config()
.unanchored_prefix(false)
.which_captures(WhichCaptures::All),
)
.build("a(b)c")
.unwrap();
assert_eq!(
nfa.states(),
&[
s_cap(1, 0, 0, 0),
s_byte(b'a', 2),
s_cap(3, 0, 1, 2),
s_byte(b'b', 4),
s_cap(5, 0, 1, 3),
s_byte(b'c', 6),
s_cap(7, 0, 0, 1),
s_match(0)
]
);
let ginfo = nfa.group_info();
assert_eq!(2, ginfo.all_group_len());
}
#[test]
fn compile_captures_implicit() {
let nfa = NFA::compiler()
.configure(
NFA::config()
.unanchored_prefix(false)
.which_captures(WhichCaptures::Implicit),
)
.build("a(b)c")
.unwrap();
assert_eq!(
nfa.states(),
&[
s_cap(1, 0, 0, 0),
s_byte(b'a', 2),
s_byte(b'b', 3),
s_byte(b'c', 4),
s_cap(5, 0, 0, 1),
s_match(0)
]
);
let ginfo = nfa.group_info();
assert_eq!(1, ginfo.all_group_len());
}
#[test]
fn compile_captures_none() {
let nfa = NFA::compiler()
.configure(
NFA::config()
.unanchored_prefix(false)
.which_captures(WhichCaptures::None),
)
.build("a(b)c")
.unwrap();
assert_eq!(
nfa.states(),
&[s_byte(b'a', 1), s_byte(b'b', 2), s_byte(b'c', 3), s_match(0)]
);
let ginfo = nfa.group_info();
assert_eq!(0, ginfo.all_group_len());
}
}