spinoso_string/enc/utf8/
borrowed.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
use alloc::boxed::Box;
use core::ops::Range;
use core::slice::SliceIndex;

use bstr::ByteSlice;

use crate::iter::{Bytes, Iter, IterMut};
use crate::ord::OrdError;

mod codepoints;
mod eq;
mod impls;

pub use codepoints::Codepoints;

#[repr(transparent)]
pub struct Utf8Str {
    bytes: [u8],
}

impl Utf8Str {
    #[inline]
    #[must_use]
    pub fn new<B: ?Sized + AsRef<[u8]>>(bytes: &B) -> &Utf8Str {
        Utf8Str::from_bytes(bytes.as_ref())
    }

    #[inline]
    #[must_use]
    pub(crate) fn new_mut<B: ?Sized + AsMut<[u8]>>(bytes: &mut B) -> &mut Utf8Str {
        Utf8Str::from_bytes_mut(bytes.as_mut())
    }

    #[inline]
    #[must_use]
    pub const fn empty() -> &'static Utf8Str {
        Utf8Str::from_bytes(b"")
    }

    #[inline]
    #[must_use]
    pub const fn from_bytes(slice: &[u8]) -> &Utf8Str {
        // SAFETY: `Utf8Str` is a `repr(transparent)` wrapper around `[u8]`.
        unsafe {
            let ptr: *const [u8] = slice;
            let ptr = ptr as *const Utf8Str;
            &*ptr
        }
    }

    #[inline]
    #[must_use]
    pub fn from_bytes_mut(slice: &mut [u8]) -> &mut Utf8Str {
        // SAFETY: `Utf8Str` is a `repr(transparent)` wrapper around `[u8]`.
        unsafe {
            let ptr: *mut [u8] = slice;
            let ptr = ptr as *mut Utf8Str;
            &mut *ptr
        }
    }

    #[inline]
    pub fn from_boxed_bytes(slice: Box<[u8]>) -> Box<Utf8Str> {
        // SAFETY: `Utf8Str` is a `repr(transparent)` wrapper around `[u8]`.
        unsafe { Box::from_raw(Box::into_raw(slice) as _) }
    }

    #[inline]
    pub fn into_boxed_bytes(slice: Box<Utf8Str>) -> Box<[u8]> {
        // SAFETY: `Utf8Str` is a `repr(transparent)` wrapper around `[u8]`.
        unsafe { Box::from_raw(Box::into_raw(slice) as _) }
    }

    #[inline]
    #[must_use]
    pub const fn as_bytes(&self) -> &[u8] {
        &self.bytes
    }

    #[inline]
    #[must_use]
    pub fn as_bytes_mut(&mut self) -> &mut [u8] {
        &mut self.bytes
    }
}

// Raw
impl Utf8Str {
    #[inline]
    #[must_use]
    pub fn as_ptr(&self) -> *const u8 {
        self.as_bytes().as_ptr()
    }

    #[inline]
    #[must_use]
    pub fn as_mut_ptr(&mut self) -> *mut u8 {
        self.as_bytes_mut().as_mut_ptr()
    }
}

// Core Iterators
impl Utf8Str {
    #[inline]
    #[must_use]
    pub fn iter(&self) -> Iter<'_> {
        Iter::from_slice(self.as_bytes())
    }

    #[inline]
    #[must_use]
    pub fn iter_mut(&mut self) -> IterMut<'_> {
        IterMut::from_mut_slice(self.as_bytes_mut())
    }

    #[inline]
    #[must_use]
    pub fn bytes(&self) -> Bytes<'_> {
        Bytes::from_slice(self.as_bytes())
    }
}

// Size and Capacity
impl Utf8Str {
    #[inline]
    #[must_use]
    pub fn len(&self) -> usize {
        self.as_bytes().len()
    }

    #[inline]
    #[must_use]
    pub fn is_empty(&self) -> bool {
        self.as_bytes().is_empty()
    }
}

// Character-oriented APIs
impl Utf8Str {
    #[must_use]
    pub fn chr(&self) -> &Utf8Str {
        let slice = self.as_bytes();
        let prefix = match bstr::decode_utf8(slice) {
            (Some(_), size) => size,
            (None, 0) => return Utf8Str::empty(),
            (None, _) => 1,
        };
        // SAFETY: the UTF-8 decode above guarantees the prefix len is a valid
        // slice index.
        let s = unsafe { self.get_unchecked(..prefix) };
        Utf8Str::from_bytes(s)
    }

    pub fn ord(&self) -> Result<u32, OrdError> {
        let (ch, size) = bstr::decode_utf8(self.as_bytes());
        match ch {
            // All `char`s are valid `u32`s
            Some(ch) => Ok(u32::from(ch)),
            None if size == 0 => Err(OrdError::empty_string()),
            None => Err(OrdError::invalid_utf8_byte_sequence()),
        }
    }

    #[must_use]
    pub fn char_len(&self) -> usize {
        let bytes = self.as_bytes();

        let tail = if let Some(idx) = bytes.find_non_ascii_byte() {
            idx
        } else {
            // The entire string is ASCII bytes, so fastpath return the slice
            // length.
            return bytes.len();
        };

        // SAFETY: `ByteSlice::find_non_ascii_byte` guarantees that the index is
        // in range for slicing if `Some(_)` is returned.
        let bytes = unsafe { bytes.get_unchecked(tail..) };

        // if the tail is valid UTF-8, use a fast path by delegating to SIMD
        // `bytecount` crate.
        if simdutf8::basic::from_utf8(bytes).is_ok() {
            return tail + bytecount::num_chars(bytes);
        }

        // Else fallback to decoding UTF-8 in chunks using `bstr`.
        let mut char_len = tail;
        for chunk in bytes.utf8_chunks() {
            char_len += bytecount::num_chars(chunk.valid().as_bytes());
            char_len += chunk.invalid().len();
        }
        char_len
    }

    #[must_use]
    pub fn get_char(&self, index: usize) -> Option<&Utf8Str> {
        // Fast path rejection for indexes beyond bytesize, which is cheap to
        // retrieve.
        if index >= self.len() {
            return None;
        }

        let slice = self.as_bytes();
        // Fast path for trying to treat the conventionally UTF-8 string as
        // entirely ASCII.
        //
        // If the string is either all ASCII or all ASCII for a prefix of the
        // string that contains the range we wish to slice, use byte slicing
        // like `AsciiStr` and `BinaryStr` do.
        let consumed = match slice.find_non_ascii_byte() {
            // The string is entirely ASCII, so we can always use byte slicing
            // to mean char slicing.
            None => {
                let s = slice.get(index..=index)?;
                return Some(Utf8Str::from_bytes(s));
            }
            // The first non-ASCII character occurs beyond the index we wish to
            // retrieve, so we can use byte slicing to mean char slicing.
            Some(idx) if idx > index => {
                let s = slice.get(index..=index)?;
                return Some(Utf8Str::from_bytes(s));
            }
            // The first `idx` characters of the `Utf8Str` end at the `idx` byte
            // position.
            Some(idx) => idx,
        };

        // Discard the ASCII prefix and begin a forward search with a character-
        // at-a-time decode.
        //
        // SAFETY: `find_non_ascii_byte` guarantees that when `Some(idx)` is
        // returned, `idx` is a valid position in the slice.
        let mut slice = unsafe { slice.get_unchecked(consumed..) };
        // Count of "characters" remaining until the `index`th character.
        let mut remaining = index - consumed;

        // This loop will terminate when either:
        //
        // - It counts `index` number of characters.
        // - It consumes the entire slice when scanning for the `index`th
        //   character.
        //
        // The loop will advance by at least one byte every iteration.
        loop {
            match bstr::decode_utf8(slice) {
                // `decode_utf8` only returns a 0 size when the slice is empty.
                //
                // If we've run out of slice while trying to find the `index`th
                // character, the lookup fails and we return `nil`.
                (_, 0) => return None,

                // The next two arms mean we've reached the `index`th character.
                // Either return the next valid UTF-8 character byte slice or,
                // if the next bytes are an invalid UTF-8 sequence, the next byte.
                (Some(_), size) if remaining == 0 => {
                    // SAFETY: `decode_utf8` guarantees that the number of bytes
                    // returned on a successful decode can be used to slice into
                    // the given slice.
                    let s = unsafe { slice.get_unchecked(..size) };
                    return Some(Utf8Str::from_bytes(s));
                }
                (None, _) if remaining == 0 => {
                    // SAFETY: `decode_utf8` guarantees unsuccessful decodes
                    // consume 0..=3 bytes and size is guaranteed to be non-zero
                    // per the first match arm.
                    let s = unsafe { slice.get_unchecked(..1) };
                    return Some(Utf8Str::from_bytes(s));
                }

                // We found a single UTF-8 encoded character keep track of the
                // count and advance the substring to continue decoding.
                (Some(_), size) => {
                    // SAFETY: `decode_utf8` guarantees that at least `size`
                    // bytes exist in the slice.
                    slice = unsafe { slice.get_unchecked(size..) };
                    remaining -= 1;
                }

                // The next two arms handle the case where we have encountered
                // an invalid UTF-8 byte sequence.
                //
                // In this case, `decode_utf8` will return slices whose length
                // is `1..=3`. The length of this slice is the number of
                // "characters" we can advance the loop by.
                //
                // If the invalid UTF-8 sequence contains more bytes than we
                // have remaining to get to the `index`th char, then the target
                // character is inside the invalid UTF-8 sequence.
                (None, size) if remaining < size => {
                    // SAFETY: `decode_utf8` guarantees that at least `size`
                    // bytes exist in the slice and we check that `remaining` is
                    // less than `size`.
                    let s = unsafe { slice.get_unchecked(remaining..=remaining) };
                    return Some(Utf8Str::from_bytes(s));
                }
                // If there are more characters remaining than the number of
                // bytes yielded in the invalid UTF-8 byte sequence, count
                // `size` bytes and advance the slice to continue decoding.
                (None, size) => {
                    // SAFETY: `decode_utf8` guarantees that at least `size`
                    // bytes exist in the slice.
                    slice = unsafe { slice.get_unchecked(size..) };
                    remaining -= size;
                }
            }
        }
    }

    #[must_use]
    pub fn get_char_slice(&self, range: Range<usize>) -> Option<&Utf8Str> {
        let Range { start, end } = range;

        // Fast path the lookup if the end of the range is before the start.
        if end < start {
            // Yes, these types of ranges are allowed and they return `""`.
            //
            // ```
            // [3.0.1] > "aaa"[1..0]
            // => ""
            // [3.0.1] > "aaa"[2..0]
            // => ""
            // [3.0.1] > "aaa"[2..1]
            // => ""
            // [3.0.1] > "💎🦀😅"[2..1]
            // => ""
            // [3.0.1] > "💎🦀😅"[3..0]
            // => ""
            // ```
            //
            // but only if `start` is within the string.
            //
            // ```
            // [3.0.1] > "aaa"[10..4]
            // => nil
            // [3.0.1] > "aaa"[10..0]
            // => nil
            // [3.0.1] > "💎🦀😅"[10..4]
            // => nil
            // [3.0.1] > "💎🦀😅"[10..0]
            // => nil
            // [3.0.1] > "💎🦀😅"[6..0]
            // => nil
            // [3.0.1] > "💎🦀😅"[4..0]
            // => nil
            // ```
            //
            // attempt to short-circuit with a cheap length retrieval
            if start > self.len() || start > self.char_len() {
                return None;
            }
            return Some(Utf8Str::empty());
        }

        // If the start of the range is beyond the character count of the
        // string, the whole lookup must fail.
        //
        // Slice lookups where the start is just beyond the last character index
        // always return an empty slice.
        //
        // ```
        // [3.0.1] > "aaa"[10, 0]
        // => nil
        // [3.0.1] > "aaa"[10, 7]
        // => nil
        // [3.0.1] > "aaa"[3, 7]
        // => ""
        // [3.0.1] > "🦀💎"[2, 0]
        // => ""
        // [3.0.1] > "🦀💎"[3, 1]
        // => nil
        // [3.0.1] > "🦀💎"[2, 1]
        // => ""
        // ```
        //
        // Fast path rejection for indexes beyond bytesize, which is cheap to
        // retrieve.
        if start > self.len() {
            return None;
        }
        match self.char_len() {
            char_length if start > char_length => return None,
            char_length if start == char_length => return Some(Utf8Str::empty()),
            _ => {}
        }

        // The span is guaranteed to at least partially overlap now.
        match end - start {
            // Empty substrings are present in all strings, even empty ones.
            //
            // ```
            // [3.0.1] > "aaa"[""]
            // => ""
            // [3.0.1] > ""[""]
            // => ""
            // [3.0.1] > ""[0, 0]
            // => ""
            // [3.0.1] > "aaa"[0, 0]
            // => ""
            // [3.0.1] > "aaa"[2, 0]
            // => ""
            // [3.0.1] > "🦀💎"[1, 0]
            // => ""
            // [3.0.1] > "🦀💎"[2, 0]
            // => ""
            // ```
            0 => return Some(Utf8Str::empty()),
            // Delegate to the specialized single char lookup, which allows the
            // remainder of this routine to fall back to the general case of
            // multi-character spans.
            //
            // ```
            // [3.0.1] > "abc"[2, 1]
            // => "c"
            // [3.0.1] > "🦀💎"[1, 1]
            // => "💎"
            // ```
            1 => return self.get_char(start),
            _ => {}
        }

        let slice = self.as_bytes();

        // Fast path for trying to treat the conventionally UTF-8 string
        // as entirely ASCII.
        //
        // If the string is either all ASCII or all ASCII for the subset
        // of the string we wish to slice, fallback to byte slicing as in
        // the ASCII and binary fast path.
        //
        // Perform the same saturate-to-end slicing mechanism if `end`
        // is beyond the character length of the string.
        let consumed = match slice.find_non_ascii_byte() {
            // The entire string is ASCII, so byte indexing <=> char
            // indexing.
            None => {
                let s = slice.get(start..end).or_else(|| slice.get(start..))?;
                return Some(Utf8Str::from_bytes(s));
            }
            // The whole substring we are interested in is ASCII, so
            // byte indexing is still valid.
            Some(non_ascii_byte_offset) if non_ascii_byte_offset > end => {
                let s = self.get(start..end)?;
                return Some(Utf8Str::from_bytes(s));
            }
            // We turn non-ASCII somewhere inside before the substring
            // we're interested in, so consume that much.
            Some(non_ascii_byte_offset) if non_ascii_byte_offset <= start => non_ascii_byte_offset,
            // This means we turn non-ASCII somewhere inside the substring.
            // Consume up to start.
            Some(_) => start,
        };

        // Scan for the beginning of the slice
        let mut slice = &slice[consumed..];
        // Count of "characters" remaining until the `start`th character.
        let mut remaining = start - consumed;

        if remaining > 0 {
            // This loop will terminate when either:
            //
            // - It counts `start` number of characters.
            // - It consumes the entire slice when scanning for the
            //   `start`th character.
            //
            // The loop will advance by at least one byte every iteration.
            loop {
                match bstr::decode_utf8(slice) {
                    // If we've run out of slice while trying to find the
                    // `start`th character, the lookup fails and we return `nil`.
                    (_, 0) => return None,

                    // We found a single UTF-8 encoded character. keep track
                    // of the count and advance the substring to continue
                    // decoding.
                    //
                    // If there's only one more to go, advance and stop the
                    // loop.
                    (Some(_), size) if remaining == 1 => {
                        slice = &slice[size..];
                        break;
                    }
                    // Otherwise, keep track of the character we observed and
                    // advance the slice to continue decoding.
                    (Some(_), size) => {
                        slice = &slice[size..];
                        remaining -= 1;
                    }

                    // The next two arms handle the case where we have
                    // encountered an invalid UTF-8 byte sequence.
                    //
                    // In this case, `decode_utf8` will return slices whose
                    // length is `1..=3`. The length of this slice is the
                    // number of "characters" we can advance the loop by.
                    //
                    // If the invalid UTF-8 sequence contains more bytes
                    // than we have remaining to get to the `start`th char,
                    // then we can break the loop directly.
                    (None, size) if remaining <= size => {
                        slice = &slice[remaining..];
                        break;
                    }
                    // If there are more characters remaining than the number
                    // of bytes yielded in the invalid UTF-8 byte sequence,
                    // count `size` bytes and advance the slice to continue
                    // decoding.
                    (None, size) => {
                        slice = &slice[size..];
                        remaining -= size;
                    }
                }
            }
        };

        // Scan the slice for the span of characters we want to return.
        remaining = end - start;
        // We know `remaining` is not zero because we fast-pathed that
        // case above.
        debug_assert!(remaining > 0);

        // keep track of the start of the substring from the `start`th
        // character.
        let substr = slice;

        // This loop will terminate when either:
        //
        // - It counts the next `start - end` number of characters.
        // - It consumes the entire slice when scanning for the `end`th
        //   character.
        //
        // The loop will advance by at least one byte every iteration.
        loop {
            match bstr::decode_utf8(slice) {
                // If we've run out of slice while trying to find the `end`th
                // character, saturate the slice to the end of the string.
                (_, 0) => return Some(Utf8Str::from_bytes(substr)),

                // We found a single UTF-8 encoded character. keep track
                // of the count and advance the substring to continue
                // decoding.
                //
                // If there's only one more to go, advance and stop the
                // loop.
                (Some(_), size) if remaining == 1 => {
                    // Push `endth` more positive because this match has
                    // the effect of shrinking `slice`.
                    let endth = substr.len() - slice.len() + size;
                    let s = &substr[..endth];
                    return Some(Utf8Str::from_bytes(s));
                }
                // Otherwise, keep track of the character we observed and
                // advance the slice to continue decoding.
                (Some(_), size) => {
                    slice = &slice[size..];
                    remaining -= 1;
                }

                // The next two arms handle the case where we have
                // encountered an invalid UTF-8 byte sequence.
                //
                // In this case, `decode_utf8` will return slices whose
                // length is `1..=3`. The length of this slice is the
                // number of "characters" we can advance the loop by.
                //
                // If the invalid UTF-8 sequence contains more bytes
                // than we have remaining to get to the `end`th char,
                // then we can break the loop directly.
                (None, size) if remaining <= size => {
                    // For an explanation of this arithmetic:
                    // If we're trying to slice:
                    //
                    // ```
                    // s = "a\xF0\x9F\x87"
                    // s[0, 2]
                    // ```
                    //
                    // By the time we get to this branch in this loop:
                    //
                    // ```
                    // substr = "a\xF0\x9F\x87"
                    // slice = "\xF0\x9F\x87"
                    // remaining = 1
                    // ```
                    //
                    // We want to compute `endth == 2`:
                    //
                    //    2   =      4       -      3      +     1
                    let endth = substr.len() - slice.len() + remaining;
                    let s = &substr[..endth];
                    return Some(Utf8Str::from_bytes(s));
                }
                // If there are more characters remaining than the number
                // of bytes yielded in the invalid UTF-8 byte sequence,
                // count `size` bytes and advance the slice to continue
                // decoding.
                (None, size) => {
                    slice = &slice[size..];
                    remaining -= size;
                }
            }
        }
    }
}

// Indexing
impl Utf8Str {
    #[inline]
    #[must_use]
    pub fn get<I>(&self, index: I) -> Option<&I::Output>
    where
        I: SliceIndex<[u8]>,
    {
        self.as_bytes().get(index)
    }

    #[inline]
    #[must_use]
    pub fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
    where
        I: SliceIndex<[u8]>,
    {
        self.as_bytes_mut().get_mut(index)
    }

    #[inline]
    #[must_use]
    pub unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output
    where
        I: SliceIndex<[u8]>,
    {
        self.as_bytes().get_unchecked(index)
    }

    #[inline]
    #[must_use]
    pub unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
    where
        I: SliceIndex<[u8]>,
    {
        self.as_bytes_mut().get_unchecked_mut(index)
    }
}

// Encoding
impl Utf8Str {
    #[must_use]
    pub fn is_ascii_only(&self) -> bool {
        self.as_bytes().is_ascii()
    }

    #[must_use]
    pub fn is_valid_encoding(&self) -> bool {
        if self.is_ascii_only() {
            return true;
        }

        simdutf8::basic::from_utf8(self.as_bytes()).is_ok()
    }
}

// Slicing routines
impl Utf8Str {
    #[inline]
    #[must_use]
    pub fn starts_with(&self, slice: &[u8]) -> bool {
        self.as_bytes().starts_with(slice)
    }

    #[inline]
    #[must_use]
    pub fn ends_with(&self, slice: &[u8]) -> bool {
        self.as_bytes().ends_with(slice)
    }
}

// Searching routines
impl Utf8Str {
    #[must_use]
    pub fn index(&self, needle: &[u8], offset: usize) -> Option<usize> {
        // Decode needle
        // Needle containing any invalid UTF-8 should never match in MRI
        //
        // ```console
        // [3.2.2] > s = "abc"
        // => "abc"
        // [3.2.2] > s.encoding
        // => #<Encoding:UTF-8>
        // [3.2.2] > s.index "\xFF"
        // => nil
        // [3.2.2] > s = "\xFF\xFE"
        // => "\xFF\xFE"
        // [3.2.2] > s.encoding
        // => #<Encoding:UTF-8>
        // [3.2.2] > s.index "\xFF"
        // => nil
        // [3.2.2] > s.index "\xFF".b
        // (irb):14:in `index': incompatible character encodings: UTF-8 and ASCII-8BIT (Encoding::CompatibilityError)
        //         from (irb):14:in `<main>'
        //         from /usr/local/var/rbenv/versions/3.2.2/lib/ruby/gems/3.2.0/gems/irb-1.6.2/exe/irb:11:in `<top (required)>'
        //         from /usr/local/var/rbenv/versions/3.2.2/bin/irb:25:in `load'
        //         from /usr/local/var/rbenv/versions/3.2.2/bin/irb:25:in `<main>'
        // ```
        if !Utf8Str::from_bytes(needle).is_valid_encoding() {
            return None;
        }

        let prefix = self.get_char_slice(0..offset)?;
        let tail = &self[prefix.len()..];
        let index = tail.as_bytes().find(needle)?;

        let s = Utf8Str::from_bytes(&tail[..index]);
        Some(offset + s.char_len())
    }

    #[must_use]
    pub fn rindex(&self, needle: &[u8], offset: usize) -> Option<usize> {
        // Decode needle
        // Needle containing any invalid UTF-8 should never match in MRI
        //
        // ```console
        // [3.2.2] > s = "abc"
        // => "abc"
        // [3.2.2] > s.encoding
        // => #<Encoding:UTF-8>
        // [3.2.2] > s.rindex "\xFF"
        // => nil
        // [3.2.2] > s = "\xFF\xFE"
        // => "\xFF\xFE"
        // [3.2.2] > s.encoding
        // => #<Encoding:UTF-8>
        // [3.2.2] > s.rindex "\xFF"
        // => nil
        // [3.2.2] > s.rindex "\xFF".b
        // (irb):7:in `rindex': incompatible character encodings: UTF-8 and ASCII-8BIT (Encoding::CompatibilityError)
        //         from (irb):7:in `<main>'
        //         from /usr/local/var/rbenv/versions/3.2.2/lib/ruby/gems/3.2.0/gems/irb-1.6.2/exe/irb:11:in `<top (required)>'
        //         from /usr/local/var/rbenv/versions/3.2.2/bin/irb:25:in `load'
        //         from /usr/local/var/rbenv/versions/3.2.2/bin/irb:25:in `<main>'
        // ```
        if !needle.is_utf8() {
            return None;
        }

        let endpoint = offset.saturating_add(1);
        let buf = self.get_char_slice(0..endpoint).unwrap_or(self);
        let index = buf.as_bytes().rfind(needle)?;
        let s = Utf8Str::from_bytes(&buf[..index]);
        Some(s.char_len())
    }
}

#[cfg(test)]
mod tests {
    use alloc::string::String;
    use core::fmt::Write;

    use super::Utf8Str;

    #[test]
    fn empty_is_empty() {
        let s = Utf8Str::empty();
        assert_eq!(s.len(), 0);
        assert_eq!(s.as_bytes(), &[]);
    }

    #[test]
    fn default_is_empty() {
        assert_eq!(Utf8Str::empty(), <&Utf8Str>::default());
    }

    #[test]
    fn debug_is_not_empty() {
        let s = Utf8Str::empty();
        let mut buf = String::new();
        write!(&mut buf, "{s:?}").unwrap();
        assert!(!buf.is_empty());

        let s = Utf8Str::new("abc");
        let mut buf = String::new();
        write!(&mut buf, "{s:?}").unwrap();
        assert!(!buf.is_empty());
        assert!(buf.contains(r#""abc""#));

        let s = Utf8Str::new("🦀💎");
        let mut buf = String::new();
        write!(&mut buf, "{s:?}").unwrap();
        assert!(!buf.is_empty());

        let s = Utf8Str::new(b"\xFF\xFE");
        let mut buf = String::new();
        write!(&mut buf, "{s:?}").unwrap();
        assert!(!buf.is_empty());
    }

    #[test]
    fn debug_contains_readable_byte_contents() {
        let s = Utf8Str::empty();
        let mut buf = String::new();
        write!(&mut buf, "{s:?}").unwrap();
        assert!(buf.contains(r#""""#));

        let s = Utf8Str::new("abc");
        let mut buf = String::new();
        write!(&mut buf, "{s:?}").unwrap();
        assert!(buf.contains(r#""abc""#));

        let s = Utf8Str::new("🦀💎");
        let mut buf = String::new();
        write!(&mut buf, "{s:?}").unwrap();
        assert!(buf.contains(r#""🦀💎""#));

        let s = Utf8Str::new(b"\xFF\xFE");
        let mut buf = String::new();
        write!(&mut buf, "{s:?}").unwrap();
        assert!(buf.contains(r#""\xFF\xFE""#));
    }

    #[test]
    #[allow(clippy::no_effect_underscore_binding)]
    fn slice_indexing_is_byte_slicing() {
        let s = Utf8Str::new("a🦀b💎c");
        // individual bytes can be copied out of the string ref.
        for idx in 0..s.len() {
            let _byte: u8 = s[idx];
        }

        // slicing in the middle of multi-byte UTF-8 characters is fine.
        for idx in 0..s.len() {
            let _span: &[u8] = &s[idx..=idx];
        }
        for idx in 0..s.len() - 1 {
            let _span: &[u8] = &s[idx..idx + 2];
        }
    }

    #[test]
    fn mut_slice_indexing_is_mut_byte_slicing() {
        let mut data = "a🦀b💎c".as_bytes().to_vec();
        let s = Utf8Str::new_mut(&mut data);
        // individual bytes can be copied out of the string ref.
        for idx in 0..s.len() {
            let cell: &mut u8 = &mut s[idx];
            *cell = b'!';
        }
        assert_eq!(s, Utf8Str::new("!!!!!!!!!!!"));

        // slicing in the middle of multi-byte UTF-8 characters is fine.
        let s = Utf8Str::new_mut(&mut data);
        for idx in 0..s.len() {
            let span: &mut [u8] = &mut s[idx..=idx];
            span.copy_from_slice(b"%");
        }
        assert_eq!(s, Utf8Str::new("%%%%%%%%%%%"));

        let s = Utf8Str::new_mut(&mut data);
        for idx in 0..s.len() - 1 {
            let span: &mut [u8] = &mut s[idx..idx + 2];
            span.copy_from_slice(b"^&");
        }
        assert_eq!(s, Utf8Str::new("^^^^^^^^^^&"));
    }
}