tinyvec/
tinyvec.rs

1use super::*;
2
3use alloc::vec::{self, Vec};
4use core::convert::TryFrom;
5use tinyvec_macros::impl_mirrored;
6
7#[cfg(feature = "rustc_1_57")]
8use alloc::collections::TryReserveError;
9
10#[cfg(feature = "serde")]
11use core::marker::PhantomData;
12#[cfg(feature = "serde")]
13use serde::de::{Deserialize, Deserializer, SeqAccess, Visitor};
14#[cfg(feature = "serde")]
15use serde::ser::{Serialize, SerializeSeq, Serializer};
16
17/// Helper to make a `TinyVec`.
18///
19/// You specify the backing array type, and optionally give all the elements you
20/// want to initially place into the array.
21///
22/// ```rust
23/// use tinyvec::*;
24///
25/// // The backing array type can be specified in the macro call
26/// let empty_tv = tiny_vec!([u8; 16]);
27/// let some_ints = tiny_vec!([i32; 4] => 1, 2, 3);
28/// let many_ints = tiny_vec!([i32; 4] => 1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
29///
30/// // Or left to inference
31/// let empty_tv: TinyVec<[u8; 16]> = tiny_vec!();
32/// let some_ints: TinyVec<[i32; 4]> = tiny_vec!(1, 2, 3);
33/// let many_ints: TinyVec<[i32; 4]> = tiny_vec!(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
34/// ```
35#[macro_export]
36#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
37macro_rules! tiny_vec {
38  ($array_type:ty => $($elem:expr),* $(,)?) => {
39    {
40      // https://github.com/rust-lang/lang-team/issues/28
41      const INVOKED_ELEM_COUNT: usize = 0 $( + { let _ = stringify!($elem); 1 })*;
42      // If we have more `$elem` than the `CAPACITY` we will simply go directly
43      // to constructing on the heap.
44      match $crate::TinyVec::constructor_for_capacity(INVOKED_ELEM_COUNT) {
45        $crate::TinyVecConstructor::Inline(f) => {
46          f($crate::array_vec!($array_type => $($elem),*))
47        }
48        $crate::TinyVecConstructor::Heap(f) => {
49          f(vec!($($elem),*))
50        }
51      }
52    }
53  };
54  ($array_type:ty) => {
55    $crate::TinyVec::<$array_type>::default()
56  };
57  ($($elem:expr),*) => {
58    $crate::tiny_vec!(_ => $($elem),*)
59  };
60  ($elem:expr; $n:expr) => {
61    $crate::TinyVec::from([$elem; $n])
62  };
63  () => {
64    $crate::tiny_vec!(_)
65  };
66}
67
68#[doc(hidden)] // Internal implementation details of `tiny_vec!`
69pub enum TinyVecConstructor<A: Array> {
70  Inline(fn(ArrayVec<A>) -> TinyVec<A>),
71  Heap(fn(Vec<A::Item>) -> TinyVec<A>),
72}
73
74/// A vector that starts inline, but can automatically move to the heap.
75///
76/// * Requires the `alloc` feature
77///
78/// A `TinyVec` is either an Inline([`ArrayVec`](crate::ArrayVec::<A>)) or
79/// Heap([`Vec`](https://doc.rust-lang.org/alloc/vec/struct.Vec.html)). The
80/// interface for the type as a whole is a bunch of methods that just match on
81/// the enum variant and then call the same method on the inner vec.
82///
83/// ## Construction
84///
85/// Because it's an enum, you can construct a `TinyVec` simply by making an
86/// `ArrayVec` or `Vec` and then putting it into the enum.
87///
88/// There is also a macro
89///
90/// ```rust
91/// # use tinyvec::*;
92/// let empty_tv = tiny_vec!([u8; 16]);
93/// let some_ints = tiny_vec!([i32; 4] => 1, 2, 3);
94/// ```
95#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
96pub enum TinyVec<A: Array> {
97  #[allow(missing_docs)]
98  Inline(ArrayVec<A>),
99  #[allow(missing_docs)]
100  Heap(Vec<A::Item>),
101}
102
103impl<A> Clone for TinyVec<A>
104where
105  A: Array + Clone,
106  A::Item: Clone,
107{
108  #[inline]
109  fn clone(&self) -> Self {
110    match self {
111      TinyVec::Heap(v) => TinyVec::Heap(v.clone()),
112      TinyVec::Inline(v) => TinyVec::Inline(v.clone()),
113    }
114  }
115
116  #[inline]
117  fn clone_from(&mut self, o: &Self) {
118    if o.len() > self.len() {
119      self.reserve(o.len() - self.len());
120    } else {
121      self.truncate(o.len());
122    }
123    let (start, end) = o.split_at(self.len());
124    for (dst, src) in self.iter_mut().zip(start) {
125      dst.clone_from(src);
126    }
127    self.extend_from_slice(end);
128  }
129}
130
131impl<A: Array> Default for TinyVec<A> {
132  #[inline]
133  #[must_use]
134  fn default() -> Self {
135    TinyVec::Inline(ArrayVec::default())
136  }
137}
138
139impl<A: Array> Deref for TinyVec<A> {
140  type Target = [A::Item];
141
142  impl_mirrored! {
143    type Mirror = TinyVec;
144    #[inline(always)]
145    #[must_use]
146    fn deref(self: &Self) -> &Self::Target;
147  }
148}
149
150impl<A: Array> DerefMut for TinyVec<A> {
151  impl_mirrored! {
152    type Mirror = TinyVec;
153    #[inline(always)]
154    #[must_use]
155    fn deref_mut(self: &mut Self) -> &mut Self::Target;
156  }
157}
158
159impl<A: Array, I: SliceIndex<[A::Item]>> Index<I> for TinyVec<A> {
160  type Output = <I as SliceIndex<[A::Item]>>::Output;
161  #[inline(always)]
162  #[must_use]
163  fn index(&self, index: I) -> &Self::Output {
164    &self.deref()[index]
165  }
166}
167
168impl<A: Array, I: SliceIndex<[A::Item]>> IndexMut<I> for TinyVec<A> {
169  #[inline(always)]
170  #[must_use]
171  fn index_mut(&mut self, index: I) -> &mut Self::Output {
172    &mut self.deref_mut()[index]
173  }
174}
175
176#[cfg(feature = "std")]
177#[cfg_attr(docs_rs, doc(cfg(feature = "std")))]
178impl<A: Array<Item = u8>> std::io::Write for TinyVec<A> {
179  #[inline(always)]
180  fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
181    self.extend_from_slice(buf);
182    Ok(buf.len())
183  }
184
185  #[inline(always)]
186  fn flush(&mut self) -> std::io::Result<()> {
187    Ok(())
188  }
189}
190
191#[cfg(feature = "serde")]
192#[cfg_attr(docs_rs, doc(cfg(feature = "serde")))]
193impl<A: Array> Serialize for TinyVec<A>
194where
195  A::Item: Serialize,
196{
197  #[must_use]
198  fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
199  where
200    S: Serializer,
201  {
202    let mut seq = serializer.serialize_seq(Some(self.len()))?;
203    for element in self.iter() {
204      seq.serialize_element(element)?;
205    }
206    seq.end()
207  }
208}
209
210#[cfg(feature = "serde")]
211#[cfg_attr(docs_rs, doc(cfg(feature = "serde")))]
212impl<'de, A: Array> Deserialize<'de> for TinyVec<A>
213where
214  A::Item: Deserialize<'de>,
215{
216  fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
217  where
218    D: Deserializer<'de>,
219  {
220    deserializer.deserialize_seq(TinyVecVisitor(PhantomData))
221  }
222}
223
224#[cfg(feature = "borsh")]
225#[cfg_attr(docs_rs, doc(cfg(feature = "borsh")))]
226impl<A: Array> borsh::BorshSerialize for TinyVec<A>
227where
228  <A as Array>::Item: borsh::BorshSerialize,
229{
230  fn serialize<W: borsh::io::Write>(
231    &self, writer: &mut W,
232  ) -> borsh::io::Result<()> {
233    <usize as borsh::BorshSerialize>::serialize(&self.len(), writer)?;
234    for elem in self.iter() {
235      <<A as Array>::Item as borsh::BorshSerialize>::serialize(elem, writer)?;
236    }
237    Ok(())
238  }
239}
240
241#[cfg(feature = "borsh")]
242#[cfg_attr(docs_rs, doc(cfg(feature = "borsh")))]
243impl<A: Array> borsh::BorshDeserialize for TinyVec<A>
244where
245  <A as Array>::Item: borsh::BorshDeserialize,
246{
247  fn deserialize_reader<R: borsh::io::Read>(
248    reader: &mut R,
249  ) -> borsh::io::Result<Self> {
250    let len = <usize as borsh::BorshDeserialize>::deserialize_reader(reader)?;
251    let mut new_tinyvec = Self::with_capacity(len);
252
253    for _ in 0..len {
254      new_tinyvec.push(
255        <<A as Array>::Item as borsh::BorshDeserialize>::deserialize_reader(
256          reader,
257        )?,
258      )
259    }
260
261    Ok(new_tinyvec)
262  }
263}
264
265#[cfg(feature = "arbitrary")]
266#[cfg_attr(docs_rs, doc(cfg(feature = "arbitrary")))]
267impl<'a, A> arbitrary::Arbitrary<'a> for TinyVec<A>
268where
269  A: Array,
270  A::Item: arbitrary::Arbitrary<'a>,
271{
272  fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
273    let v = Vec::arbitrary(u)?;
274    let mut tv = TinyVec::Heap(v);
275    tv.shrink_to_fit();
276    Ok(tv)
277  }
278}
279
280impl<A: Array> TinyVec<A> {
281  /// Returns whether elements are on heap
282  #[inline(always)]
283  #[must_use]
284  pub fn is_heap(&self) -> bool {
285    match self {
286      TinyVec::Heap(_) => true,
287      TinyVec::Inline(_) => false,
288    }
289  }
290  /// Returns whether elements are on stack
291  #[inline(always)]
292  #[must_use]
293  pub fn is_inline(&self) -> bool {
294    !self.is_heap()
295  }
296
297  /// Shrinks the capacity of the vector as much as possible.\
298  /// It is inlined if length is less than `A::CAPACITY`.
299  /// ```rust
300  /// use tinyvec::*;
301  /// let mut tv = tiny_vec!([i32; 2] => 1, 2, 3);
302  /// assert!(tv.is_heap());
303  /// let _ = tv.pop();
304  /// assert!(tv.is_heap());
305  /// tv.shrink_to_fit();
306  /// assert!(tv.is_inline());
307  /// ```
308  #[inline]
309  pub fn shrink_to_fit(&mut self) {
310    let vec = match self {
311      TinyVec::Inline(_) => return,
312      TinyVec::Heap(h) => h,
313    };
314
315    if vec.len() > A::CAPACITY {
316      return vec.shrink_to_fit();
317    }
318
319    let moved_vec = core::mem::take(vec);
320
321    let mut av = ArrayVec::default();
322    let mut rest = av.fill(moved_vec);
323    debug_assert!(rest.next().is_none());
324    *self = TinyVec::Inline(av);
325  }
326
327  /// Moves the content of the TinyVec to the heap, if it's inline.
328  /// ```rust
329  /// use tinyvec::*;
330  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
331  /// assert!(tv.is_inline());
332  /// tv.move_to_the_heap();
333  /// assert!(tv.is_heap());
334  /// ```
335  #[allow(clippy::missing_inline_in_public_items)]
336  pub fn move_to_the_heap(&mut self) {
337    let arr = match self {
338      TinyVec::Heap(_) => return,
339      TinyVec::Inline(a) => a,
340    };
341
342    let v = arr.drain_to_vec();
343    *self = TinyVec::Heap(v);
344  }
345
346  /// Tries to move the content of the TinyVec to the heap, if it's inline.
347  ///
348  /// # Errors
349  ///
350  /// If the allocator reports a failure, then an error is returned and the
351  /// content is kept on the stack.
352  ///
353  /// ```rust
354  /// use tinyvec::*;
355  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
356  /// assert!(tv.is_inline());
357  /// assert_eq!(Ok(()), tv.try_move_to_the_heap());
358  /// assert!(tv.is_heap());
359  /// ```
360  #[inline]
361  #[cfg(feature = "rustc_1_57")]
362  pub fn try_move_to_the_heap(&mut self) -> Result<(), TryReserveError> {
363    let arr = match self {
364      TinyVec::Heap(_) => return Ok(()),
365      TinyVec::Inline(a) => a,
366    };
367
368    let v = arr.try_drain_to_vec()?;
369    *self = TinyVec::Heap(v);
370    return Ok(());
371  }
372
373  /// If TinyVec is inline, moves the content of it to the heap.
374  /// Also reserves additional space.
375  /// ```rust
376  /// use tinyvec::*;
377  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
378  /// assert!(tv.is_inline());
379  /// tv.move_to_the_heap_and_reserve(32);
380  /// assert!(tv.is_heap());
381  /// assert!(tv.capacity() >= 35);
382  /// ```
383  #[inline]
384  pub fn move_to_the_heap_and_reserve(&mut self, n: usize) {
385    let arr = match self {
386      TinyVec::Heap(h) => return h.reserve(n),
387      TinyVec::Inline(a) => a,
388    };
389
390    let v = arr.drain_to_vec_and_reserve(n);
391    *self = TinyVec::Heap(v);
392  }
393
394  /// If TinyVec is inline, try to move the content of it to the heap.
395  /// Also reserves additional space.
396  ///
397  /// # Errors
398  ///
399  /// If the allocator reports a failure, then an error is returned.
400  ///
401  /// ```rust
402  /// use tinyvec::*;
403  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
404  /// assert!(tv.is_inline());
405  /// assert_eq!(Ok(()), tv.try_move_to_the_heap_and_reserve(32));
406  /// assert!(tv.is_heap());
407  /// assert!(tv.capacity() >= 35);
408  /// ```
409  #[inline]
410  #[cfg(feature = "rustc_1_57")]
411  pub fn try_move_to_the_heap_and_reserve(
412    &mut self, n: usize,
413  ) -> Result<(), TryReserveError> {
414    let arr = match self {
415      TinyVec::Heap(h) => return h.try_reserve(n),
416      TinyVec::Inline(a) => a,
417    };
418
419    let v = arr.try_drain_to_vec_and_reserve(n)?;
420    *self = TinyVec::Heap(v);
421    return Ok(());
422  }
423
424  /// Reserves additional space.
425  /// Moves to the heap if array can't hold `n` more items
426  /// ```rust
427  /// use tinyvec::*;
428  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4);
429  /// assert!(tv.is_inline());
430  /// tv.reserve(1);
431  /// assert!(tv.is_heap());
432  /// assert!(tv.capacity() >= 5);
433  /// ```
434  #[inline]
435  pub fn reserve(&mut self, n: usize) {
436    let arr = match self {
437      TinyVec::Heap(h) => return h.reserve(n),
438      TinyVec::Inline(a) => a,
439    };
440
441    if n > arr.capacity() - arr.len() {
442      let v = arr.drain_to_vec_and_reserve(n);
443      *self = TinyVec::Heap(v);
444    }
445
446    /* In this place array has enough place, so no work is needed more */
447    return;
448  }
449
450  /// Tries to reserve additional space.
451  /// Moves to the heap if array can't hold `n` more items.
452  ///
453  /// # Errors
454  ///
455  /// If the allocator reports a failure, then an error is returned.
456  ///
457  /// ```rust
458  /// use tinyvec::*;
459  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4);
460  /// assert!(tv.is_inline());
461  /// assert_eq!(Ok(()), tv.try_reserve(1));
462  /// assert!(tv.is_heap());
463  /// assert!(tv.capacity() >= 5);
464  /// ```
465  #[inline]
466  #[cfg(feature = "rustc_1_57")]
467  pub fn try_reserve(&mut self, n: usize) -> Result<(), TryReserveError> {
468    let arr = match self {
469      TinyVec::Heap(h) => return h.try_reserve(n),
470      TinyVec::Inline(a) => a,
471    };
472
473    if n > arr.capacity() - arr.len() {
474      let v = arr.try_drain_to_vec_and_reserve(n)?;
475      *self = TinyVec::Heap(v);
476    }
477
478    /* In this place array has enough place, so no work is needed more */
479    return Ok(());
480  }
481
482  /// Reserves additional space.
483  /// Moves to the heap if array can't hold `n` more items
484  ///
485  /// From [Vec::reserve_exact](https://doc.rust-lang.org/std/vec/struct.Vec.html#method.reserve_exact)
486  /// ```text
487  /// Note that the allocator may give the collection more space than it requests.
488  /// Therefore, capacity can not be relied upon to be precisely minimal.
489  /// Prefer `reserve` if future insertions are expected.
490  /// ```
491  /// ```rust
492  /// use tinyvec::*;
493  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4);
494  /// assert!(tv.is_inline());
495  /// tv.reserve_exact(1);
496  /// assert!(tv.is_heap());
497  /// assert!(tv.capacity() >= 5);
498  /// ```
499  #[inline]
500  pub fn reserve_exact(&mut self, n: usize) {
501    let arr = match self {
502      TinyVec::Heap(h) => return h.reserve_exact(n),
503      TinyVec::Inline(a) => a,
504    };
505
506    if n > arr.capacity() - arr.len() {
507      let v = arr.drain_to_vec_and_reserve(n);
508      *self = TinyVec::Heap(v);
509    }
510
511    /* In this place array has enough place, so no work is needed more */
512    return;
513  }
514
515  /// Tries to reserve additional space.
516  /// Moves to the heap if array can't hold `n` more items
517  ///
518  /// # Errors
519  ///
520  /// If the allocator reports a failure, then an error is returned.
521  ///
522  /// From [Vec::try_reserve_exact](https://doc.rust-lang.org/std/vec/struct.Vec.html#method.try_reserve_exact)
523  /// ```text
524  /// Note that the allocator may give the collection more space than it requests.
525  /// Therefore, capacity can not be relied upon to be precisely minimal.
526  /// Prefer `reserve` if future insertions are expected.
527  /// ```
528  /// ```rust
529  /// use tinyvec::*;
530  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4);
531  /// assert!(tv.is_inline());
532  /// assert_eq!(Ok(()), tv.try_reserve_exact(1));
533  /// assert!(tv.is_heap());
534  /// assert!(tv.capacity() >= 5);
535  /// ```
536  #[inline]
537  #[cfg(feature = "rustc_1_57")]
538  pub fn try_reserve_exact(&mut self, n: usize) -> Result<(), TryReserveError> {
539    let arr = match self {
540      TinyVec::Heap(h) => return h.try_reserve_exact(n),
541      TinyVec::Inline(a) => a,
542    };
543
544    if n > arr.capacity() - arr.len() {
545      let v = arr.try_drain_to_vec_and_reserve(n)?;
546      *self = TinyVec::Heap(v);
547    }
548
549    /* In this place array has enough place, so no work is needed more */
550    return Ok(());
551  }
552
553  /// Makes a new TinyVec with _at least_ the given capacity.
554  ///
555  /// If the requested capacity is less than or equal to the array capacity you
556  /// get an inline vec. If it's greater than you get a heap vec.
557  /// ```
558  /// # use tinyvec::*;
559  /// let t = TinyVec::<[u8; 10]>::with_capacity(5);
560  /// assert!(t.is_inline());
561  /// assert!(t.capacity() >= 5);
562  ///
563  /// let t = TinyVec::<[u8; 10]>::with_capacity(20);
564  /// assert!(t.is_heap());
565  /// assert!(t.capacity() >= 20);
566  /// ```
567  #[inline]
568  #[must_use]
569  pub fn with_capacity(cap: usize) -> Self {
570    if cap <= A::CAPACITY {
571      TinyVec::Inline(ArrayVec::default())
572    } else {
573      TinyVec::Heap(Vec::with_capacity(cap))
574    }
575  }
576
577  /// Converts a `TinyVec<[T; N]>` into a `Box<[T]>`.
578  ///
579  /// - For `TinyVec::Heap(Vec<T>)`, it takes the `Vec<T>` and converts it into
580  ///   a `Box<[T]>` without heap reallocation.
581  /// - For `TinyVec::Inline(inner_data)`, it first converts the `inner_data` to
582  ///   `Vec<T>`, then into a `Box<[T]>`. Requiring only a single heap
583  ///   allocation.
584  ///
585  /// ## Example
586  ///
587  /// ```
588  /// use core::mem::size_of_val as mem_size_of;
589  /// use tinyvec::TinyVec;
590  ///
591  /// // Initialize TinyVec with 256 elements (exceeding inline capacity)
592  /// let v: TinyVec<[_; 128]> = (0u8..=255).collect();
593  ///
594  /// assert!(v.is_heap());
595  /// assert_eq!(mem_size_of(&v), 136); // mem size of TinyVec<[u8; N]>: N+8
596  /// assert_eq!(v.len(), 256);
597  ///
598  /// let boxed = v.into_boxed_slice();
599  /// assert_eq!(mem_size_of(&boxed), 16); // mem size of Box<[u8]>: 16 bytes (fat pointer)
600  /// assert_eq!(boxed.len(), 256);
601  /// ```
602  #[inline]
603  #[must_use]
604  pub fn into_boxed_slice(self) -> alloc::boxed::Box<[A::Item]> {
605    self.into_vec().into_boxed_slice()
606  }
607
608  /// Converts a `TinyVec<[T; N]>` into a `Vec<T>`.
609  ///
610  /// `v.into_vec()` is equivalent to `Into::<Vec<_>>::into(v)`.
611  ///
612  /// - For `TinyVec::Inline(_)`, `.into_vec()` **does not** offer a performance
613  ///   advantage over `.to_vec()`.
614  /// - For `TinyVec::Heap(vec_data)`, `.into_vec()` will take `vec_data`
615  ///   without heap reallocation.
616  ///
617  /// ## Example
618  ///
619  /// ```
620  /// use tinyvec::TinyVec;
621  ///
622  /// let v = TinyVec::from([0u8; 8]);
623  /// let v2 = v.clone();
624  ///
625  /// let vec = v.into_vec();
626  /// let vec2: Vec<_> = v2.into();
627  ///
628  /// assert_eq!(vec, vec2);
629  /// ```
630  #[inline]
631  #[must_use]
632  pub fn into_vec(self) -> Vec<A::Item> {
633    self.into()
634  }
635}
636
637impl<A: Array> TinyVec<A> {
638  /// Move all values from `other` into this vec.
639  #[inline]
640  pub fn append(&mut self, other: &mut Self) {
641    self.reserve(other.len());
642
643    /* Doing append should be faster, because it is effectively a memcpy */
644    match (self, other) {
645      (TinyVec::Heap(sh), TinyVec::Heap(oh)) => sh.append(oh),
646      (TinyVec::Inline(a), TinyVec::Heap(h)) => a.extend(h.drain(..)),
647      (ref mut this, TinyVec::Inline(arr)) => this.extend(arr.drain(..)),
648    }
649  }
650
651  impl_mirrored! {
652    type Mirror = TinyVec;
653
654    /// Remove an element, swapping the end of the vec into its place.
655    ///
656    /// ## Panics
657    /// * If the index is out of bounds.
658    ///
659    /// ## Example
660    /// ```rust
661    /// use tinyvec::*;
662    /// let mut tv = tiny_vec!([&str; 4] => "foo", "bar", "quack", "zap");
663    ///
664    /// assert_eq!(tv.swap_remove(1), "bar");
665    /// assert_eq!(tv.as_slice(), &["foo", "zap", "quack"][..]);
666    ///
667    /// assert_eq!(tv.swap_remove(0), "foo");
668    /// assert_eq!(tv.as_slice(), &["quack", "zap"][..]);
669    /// ```
670    #[inline]
671    pub fn swap_remove(self: &mut Self, index: usize) -> A::Item;
672
673    /// Remove and return the last element of the vec, if there is one.
674    ///
675    /// ## Failure
676    /// * If the vec is empty you get `None`.
677    #[inline]
678    pub fn pop(self: &mut Self) -> Option<A::Item>;
679
680    /// Removes the item at `index`, shifting all others down by one index.
681    ///
682    /// Returns the removed element.
683    ///
684    /// ## Panics
685    ///
686    /// If the index is out of bounds.
687    ///
688    /// ## Example
689    ///
690    /// ```rust
691    /// use tinyvec::*;
692    /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
693    /// assert_eq!(tv.remove(1), 2);
694    /// assert_eq!(tv.as_slice(), &[1, 3][..]);
695    /// ```
696    #[inline]
697    pub fn remove(self: &mut Self, index: usize) -> A::Item;
698
699    /// The length of the vec (in elements).
700    #[inline(always)]
701    #[must_use]
702    pub fn len(self: &Self) -> usize;
703
704    /// The capacity of the `TinyVec`.
705    ///
706    /// When not heap allocated this is fixed based on the array type.
707    /// Otherwise its the result of the underlying Vec::capacity.
708    #[inline(always)]
709    #[must_use]
710    pub fn capacity(self: &Self) -> usize;
711
712    /// Reduces the vec's length to the given value.
713    ///
714    /// If the vec is already shorter than the input, nothing happens.
715    #[inline]
716    pub fn truncate(self: &mut Self, new_len: usize);
717
718    /// A mutable pointer to the backing array.
719    ///
720    /// ## Safety
721    ///
722    /// This pointer has provenance over the _entire_ backing array/buffer.
723    #[inline(always)]
724    #[must_use]
725    pub fn as_mut_ptr(self: &mut Self) -> *mut A::Item;
726
727    /// A const pointer to the backing array.
728    ///
729    /// ## Safety
730    ///
731    /// This pointer has provenance over the _entire_ backing array/buffer.
732    #[inline(always)]
733    #[must_use]
734    pub fn as_ptr(self: &Self) -> *const A::Item;
735  }
736
737  /// Walk the vec and keep only the elements that pass the predicate given.
738  ///
739  /// ## Example
740  ///
741  /// ```rust
742  /// use tinyvec::*;
743  ///
744  /// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3, 4);
745  /// tv.retain(|&x| x % 2 == 0);
746  /// assert_eq!(tv.as_slice(), &[2, 4][..]);
747  /// ```
748  #[inline]
749  pub fn retain<F: FnMut(&A::Item) -> bool>(&mut self, acceptable: F) {
750    match self {
751      TinyVec::Inline(i) => i.retain(acceptable),
752      TinyVec::Heap(h) => h.retain(acceptable),
753    }
754  }
755
756  /// Walk the vec and keep only the elements that pass the predicate given,
757  /// having the opportunity to modify the elements at the same time.
758  ///
759  /// ## Example
760  ///
761  /// ```rust
762  /// use tinyvec::*;
763  ///
764  /// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3, 4);
765  /// tv.retain_mut(|x| if *x % 2 == 0 { *x *= 2; true } else { false });
766  /// assert_eq!(tv.as_slice(), &[4, 8][..]);
767  /// ```
768  #[inline]
769  #[cfg(feature = "rustc_1_61")]
770  pub fn retain_mut<F: FnMut(&mut A::Item) -> bool>(&mut self, acceptable: F) {
771    match self {
772      TinyVec::Inline(i) => i.retain_mut(acceptable),
773      TinyVec::Heap(h) => h.retain_mut(acceptable),
774    }
775  }
776
777  /// Helper for getting the mut slice.
778  #[inline(always)]
779  #[must_use]
780  pub fn as_mut_slice(&mut self) -> &mut [A::Item] {
781    self.deref_mut()
782  }
783
784  /// Helper for getting the shared slice.
785  #[inline(always)]
786  #[must_use]
787  pub fn as_slice(&self) -> &[A::Item] {
788    self.deref()
789  }
790
791  /// Removes all elements from the vec.
792  #[inline(always)]
793  pub fn clear(&mut self) {
794    self.truncate(0)
795  }
796
797  /// De-duplicates the vec.
798  #[cfg(feature = "nightly_slice_partition_dedup")]
799  #[inline(always)]
800  pub fn dedup(&mut self)
801  where
802    A::Item: PartialEq,
803  {
804    self.dedup_by(|a, b| a == b)
805  }
806
807  /// De-duplicates the vec according to the predicate given.
808  #[cfg(feature = "nightly_slice_partition_dedup")]
809  #[inline(always)]
810  pub fn dedup_by<F>(&mut self, same_bucket: F)
811  where
812    F: FnMut(&mut A::Item, &mut A::Item) -> bool,
813  {
814    let len = {
815      let (dedup, _) = self.as_mut_slice().partition_dedup_by(same_bucket);
816      dedup.len()
817    };
818    self.truncate(len);
819  }
820
821  /// De-duplicates the vec according to the key selector given.
822  #[cfg(feature = "nightly_slice_partition_dedup")]
823  #[inline(always)]
824  pub fn dedup_by_key<F, K>(&mut self, mut key: F)
825  where
826    F: FnMut(&mut A::Item) -> K,
827    K: PartialEq,
828  {
829    self.dedup_by(|a, b| key(a) == key(b))
830  }
831
832  /// Creates a draining iterator that removes the specified range in the vector
833  /// and yields the removed items.
834  ///
835  /// **Note: This method has significant performance issues compared to
836  /// matching on the TinyVec and then calling drain on the Inline or Heap value
837  /// inside. The draining iterator has to branch on every single access. It is
838  /// provided for simplicity and compatibility only.**
839  ///
840  /// ## Panics
841  /// * If the start is greater than the end
842  /// * If the end is past the edge of the vec.
843  ///
844  /// ## Example
845  /// ```rust
846  /// use tinyvec::*;
847  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
848  /// let tv2: TinyVec<[i32; 4]> = tv.drain(1..).collect();
849  /// assert_eq!(tv.as_slice(), &[1][..]);
850  /// assert_eq!(tv2.as_slice(), &[2, 3][..]);
851  ///
852  /// tv.drain(..);
853  /// assert_eq!(tv.as_slice(), &[]);
854  /// ```
855  #[inline]
856  pub fn drain<R: RangeBounds<usize>>(
857    &mut self, range: R,
858  ) -> TinyVecDrain<'_, A> {
859    match self {
860      TinyVec::Inline(i) => TinyVecDrain::Inline(i.drain(range)),
861      TinyVec::Heap(h) => TinyVecDrain::Heap(h.drain(range)),
862    }
863  }
864
865  /// Clone each element of the slice into this vec.
866  /// ```rust
867  /// use tinyvec::*;
868  /// let mut tv = tiny_vec!([i32; 4] => 1, 2);
869  /// tv.extend_from_slice(&[3, 4]);
870  /// assert_eq!(tv.as_slice(), [1, 2, 3, 4]);
871  /// ```
872  #[inline]
873  pub fn extend_from_slice(&mut self, sli: &[A::Item])
874  where
875    A::Item: Clone,
876  {
877    self.reserve(sli.len());
878    match self {
879      TinyVec::Inline(a) => a.extend_from_slice(sli),
880      TinyVec::Heap(h) => h.extend_from_slice(sli),
881    }
882  }
883
884  /// Wraps up an array and uses the given length as the initial length.
885  ///
886  /// Note that the `From` impl for arrays assumes the full length is used.
887  ///
888  /// ## Panics
889  ///
890  /// The length must be less than or equal to the capacity of the array.
891  #[inline]
892  #[must_use]
893  #[allow(clippy::match_wild_err_arm)]
894  pub fn from_array_len(data: A, len: usize) -> Self {
895    match Self::try_from_array_len(data, len) {
896      Ok(out) => out,
897      Err(_) => {
898        panic!("TinyVec: length {} exceeds capacity {}!", len, A::CAPACITY)
899      }
900    }
901  }
902
903  /// This is an internal implementation detail of the `tiny_vec!` macro, and
904  /// using it other than from that macro is not supported by this crate's
905  /// SemVer guarantee.
906  #[inline(always)]
907  #[doc(hidden)]
908  pub fn constructor_for_capacity(cap: usize) -> TinyVecConstructor<A> {
909    if cap <= A::CAPACITY {
910      TinyVecConstructor::Inline(TinyVec::Inline)
911    } else {
912      TinyVecConstructor::Heap(TinyVec::Heap)
913    }
914  }
915
916  /// Inserts an item at the position given, moving all following elements +1
917  /// index.
918  ///
919  /// ## Panics
920  /// * If `index` > `len`
921  ///
922  /// ## Example
923  /// ```rust
924  /// use tinyvec::*;
925  /// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3);
926  /// tv.insert(1, 4);
927  /// assert_eq!(tv.as_slice(), &[1, 4, 2, 3]);
928  /// tv.insert(4, 5);
929  /// assert_eq!(tv.as_slice(), &[1, 4, 2, 3, 5]);
930  /// ```
931  #[inline]
932  pub fn insert(&mut self, index: usize, item: A::Item) {
933    assert!(
934      index <= self.len(),
935      "insertion index (is {}) should be <= len (is {})",
936      index,
937      self.len()
938    );
939
940    let arr = match self {
941      TinyVec::Heap(v) => return v.insert(index, item),
942      TinyVec::Inline(a) => a,
943    };
944
945    if let Some(x) = arr.try_insert(index, item) {
946      let mut v = Vec::with_capacity(arr.len() * 2);
947      let mut it = arr.iter_mut().map(core::mem::take);
948      v.extend(it.by_ref().take(index));
949      v.push(x);
950      v.extend(it);
951      *self = TinyVec::Heap(v);
952    }
953  }
954
955  /// If the vec is empty.
956  #[inline(always)]
957  #[must_use]
958  pub fn is_empty(&self) -> bool {
959    self.len() == 0
960  }
961
962  /// Makes a new, empty vec.
963  #[inline(always)]
964  #[must_use]
965  pub fn new() -> Self {
966    Self::default()
967  }
968
969  /// Place an element onto the end of the vec.
970  #[inline]
971  pub fn push(&mut self, val: A::Item) {
972    // The code path for moving the inline contents to the heap produces a lot
973    // of instructions, but we have a strong guarantee that this is a cold
974    // path. LLVM doesn't know this, inlines it, and this tends to cause a
975    // cascade of other bad inlining decisions because the body of push looks
976    // huge even though nearly every call executes the same few instructions.
977    //
978    // Moving the logic out of line with #[cold] causes the hot code to  be
979    // inlined together, and we take the extra cost of a function call only
980    // in rare cases.
981    #[cold]
982    fn drain_to_heap_and_push<A: Array>(
983      arr: &mut ArrayVec<A>, val: A::Item,
984    ) -> TinyVec<A> {
985      /* Make the Vec twice the size to amortize the cost of draining */
986      let mut v = arr.drain_to_vec_and_reserve(arr.len());
987      v.push(val);
988      TinyVec::Heap(v)
989    }
990
991    match self {
992      TinyVec::Heap(v) => v.push(val),
993      TinyVec::Inline(arr) => {
994        if let Some(x) = arr.try_push(val) {
995          *self = drain_to_heap_and_push(arr, x);
996        }
997      }
998    }
999  }
1000
1001  /// Resize the vec to the new length.
1002  ///
1003  /// If it needs to be longer, it's filled with clones of the provided value.
1004  /// If it needs to be shorter, it's truncated.
1005  ///
1006  /// ## Example
1007  ///
1008  /// ```rust
1009  /// use tinyvec::*;
1010  ///
1011  /// let mut tv = tiny_vec!([&str; 10] => "hello");
1012  /// tv.resize(3, "world");
1013  /// assert_eq!(tv.as_slice(), &["hello", "world", "world"][..]);
1014  ///
1015  /// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3, 4);
1016  /// tv.resize(2, 0);
1017  /// assert_eq!(tv.as_slice(), &[1, 2][..]);
1018  /// ```
1019  #[inline]
1020  pub fn resize(&mut self, new_len: usize, new_val: A::Item)
1021  where
1022    A::Item: Clone,
1023  {
1024    self.resize_with(new_len, || new_val.clone());
1025  }
1026
1027  /// Resize the vec to the new length.
1028  ///
1029  /// If it needs to be longer, it's filled with repeated calls to the provided
1030  /// function. If it needs to be shorter, it's truncated.
1031  ///
1032  /// ## Example
1033  ///
1034  /// ```rust
1035  /// use tinyvec::*;
1036  ///
1037  /// let mut tv = tiny_vec!([i32; 3] => 1, 2, 3);
1038  /// tv.resize_with(5, Default::default);
1039  /// assert_eq!(tv.as_slice(), &[1, 2, 3, 0, 0][..]);
1040  ///
1041  /// let mut tv = tiny_vec!([i32; 2]);
1042  /// let mut p = 1;
1043  /// tv.resize_with(4, || {
1044  ///   p *= 2;
1045  ///   p
1046  /// });
1047  /// assert_eq!(tv.as_slice(), &[2, 4, 8, 16][..]);
1048  /// ```
1049  #[inline]
1050  pub fn resize_with<F: FnMut() -> A::Item>(&mut self, new_len: usize, f: F) {
1051    match new_len.checked_sub(self.len()) {
1052      None => return self.truncate(new_len),
1053      Some(n) => self.reserve(n),
1054    }
1055
1056    match self {
1057      TinyVec::Inline(a) => a.resize_with(new_len, f),
1058      TinyVec::Heap(v) => v.resize_with(new_len, f),
1059    }
1060  }
1061
1062  /// Splits the collection at the point given.
1063  ///
1064  /// * `[0, at)` stays in this vec
1065  /// * `[at, len)` ends up in the new vec.
1066  ///
1067  /// ## Panics
1068  /// * if at > len
1069  ///
1070  /// ## Example
1071  ///
1072  /// ```rust
1073  /// use tinyvec::*;
1074  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
1075  /// let tv2 = tv.split_off(1);
1076  /// assert_eq!(tv.as_slice(), &[1][..]);
1077  /// assert_eq!(tv2.as_slice(), &[2, 3][..]);
1078  /// ```
1079  #[inline]
1080  pub fn split_off(&mut self, at: usize) -> Self {
1081    match self {
1082      TinyVec::Inline(a) => TinyVec::Inline(a.split_off(at)),
1083      TinyVec::Heap(v) => TinyVec::Heap(v.split_off(at)),
1084    }
1085  }
1086
1087  /// Creates a splicing iterator that removes the specified range in the
1088  /// vector, yields the removed items, and replaces them with elements from
1089  /// the provided iterator.
1090  ///
1091  /// `splice` fuses the provided iterator, so elements after the first `None`
1092  /// are ignored.
1093  ///
1094  /// ## Panics
1095  /// * If the start is greater than the end.
1096  /// * If the end is past the edge of the vec.
1097  /// * If the provided iterator panics.
1098  ///
1099  /// ## Example
1100  /// ```rust
1101  /// use tinyvec::*;
1102  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
1103  /// let tv2: TinyVec<[i32; 4]> = tv.splice(1.., 4..=6).collect();
1104  /// assert_eq!(tv.as_slice(), &[1, 4, 5, 6][..]);
1105  /// assert_eq!(tv2.as_slice(), &[2, 3][..]);
1106  ///
1107  /// tv.splice(.., None);
1108  /// assert_eq!(tv.as_slice(), &[]);
1109  /// ```
1110  #[inline]
1111  pub fn splice<R, I>(
1112    &mut self, range: R, replacement: I,
1113  ) -> TinyVecSplice<'_, A, core::iter::Fuse<I::IntoIter>>
1114  where
1115    R: RangeBounds<usize>,
1116    I: IntoIterator<Item = A::Item>,
1117  {
1118    use core::ops::Bound;
1119    let start = match range.start_bound() {
1120      Bound::Included(x) => *x,
1121      Bound::Excluded(x) => x.saturating_add(1),
1122      Bound::Unbounded => 0,
1123    };
1124    let end = match range.end_bound() {
1125      Bound::Included(x) => x.saturating_add(1),
1126      Bound::Excluded(x) => *x,
1127      Bound::Unbounded => self.len(),
1128    };
1129    assert!(
1130      start <= end,
1131      "TinyVec::splice> Illegal range, {} to {}",
1132      start,
1133      end
1134    );
1135    assert!(
1136      end <= self.len(),
1137      "TinyVec::splice> Range ends at {} but length is only {}!",
1138      end,
1139      self.len()
1140    );
1141
1142    TinyVecSplice {
1143      removal_start: start,
1144      removal_end: end,
1145      parent: self,
1146      replacement: replacement.into_iter().fuse(),
1147    }
1148  }
1149
1150  /// Wraps an array, using the given length as the starting length.
1151  ///
1152  /// If you want to use the whole length of the array, you can just use the
1153  /// `From` impl.
1154  ///
1155  /// ## Failure
1156  ///
1157  /// If the given length is greater than the capacity of the array this will
1158  /// error, and you'll get the array back in the `Err`.
1159  #[inline]
1160  pub fn try_from_array_len(data: A, len: usize) -> Result<Self, A> {
1161    let arr = ArrayVec::try_from_array_len(data, len)?;
1162    Ok(TinyVec::Inline(arr))
1163  }
1164}
1165
1166/// Draining iterator for `TinyVecDrain`
1167///
1168/// See [`TinyVecDrain::drain`](TinyVecDrain::<A>::drain)
1169#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
1170pub enum TinyVecDrain<'p, A: Array> {
1171  #[allow(missing_docs)]
1172  Inline(ArrayVecDrain<'p, A::Item>),
1173  #[allow(missing_docs)]
1174  Heap(vec::Drain<'p, A::Item>),
1175}
1176
1177impl<'p, A: Array> Iterator for TinyVecDrain<'p, A> {
1178  type Item = A::Item;
1179
1180  impl_mirrored! {
1181    type Mirror = TinyVecDrain;
1182
1183    #[inline]
1184    fn next(self: &mut Self) -> Option<Self::Item>;
1185    #[inline]
1186    fn nth(self: &mut Self, n: usize) -> Option<Self::Item>;
1187    #[inline]
1188    fn size_hint(self: &Self) -> (usize, Option<usize>);
1189    #[inline]
1190    fn last(self: Self) -> Option<Self::Item>;
1191    #[inline]
1192    fn count(self: Self) -> usize;
1193  }
1194
1195  #[inline]
1196  fn for_each<F: FnMut(Self::Item)>(self, f: F) {
1197    match self {
1198      TinyVecDrain::Inline(i) => i.for_each(f),
1199      TinyVecDrain::Heap(h) => h.for_each(f),
1200    }
1201  }
1202}
1203
1204impl<'p, A: Array> DoubleEndedIterator for TinyVecDrain<'p, A> {
1205  impl_mirrored! {
1206    type Mirror = TinyVecDrain;
1207
1208    #[inline]
1209    fn next_back(self: &mut Self) -> Option<Self::Item>;
1210
1211    #[inline]
1212    fn nth_back(self: &mut Self, n: usize) -> Option<Self::Item>;
1213  }
1214}
1215
1216/// Splicing iterator for `TinyVec`
1217/// See [`TinyVec::splice`](TinyVec::<A>::splice)
1218#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
1219pub struct TinyVecSplice<'p, A: Array, I: Iterator<Item = A::Item>> {
1220  parent: &'p mut TinyVec<A>,
1221  removal_start: usize,
1222  removal_end: usize,
1223  replacement: I,
1224}
1225
1226impl<'p, A, I> Iterator for TinyVecSplice<'p, A, I>
1227where
1228  A: Array,
1229  I: Iterator<Item = A::Item>,
1230{
1231  type Item = A::Item;
1232
1233  #[inline]
1234  fn next(&mut self) -> Option<A::Item> {
1235    if self.removal_start < self.removal_end {
1236      match self.replacement.next() {
1237        Some(replacement) => {
1238          let removed = core::mem::replace(
1239            &mut self.parent[self.removal_start],
1240            replacement,
1241          );
1242          self.removal_start += 1;
1243          Some(removed)
1244        }
1245        None => {
1246          let removed = self.parent.remove(self.removal_start);
1247          self.removal_end -= 1;
1248          Some(removed)
1249        }
1250      }
1251    } else {
1252      None
1253    }
1254  }
1255
1256  #[inline]
1257  fn size_hint(&self) -> (usize, Option<usize>) {
1258    let len = self.len();
1259    (len, Some(len))
1260  }
1261}
1262
1263impl<'p, A, I> ExactSizeIterator for TinyVecSplice<'p, A, I>
1264where
1265  A: Array,
1266  I: Iterator<Item = A::Item>,
1267{
1268  #[inline]
1269  fn len(&self) -> usize {
1270    self.removal_end - self.removal_start
1271  }
1272}
1273
1274impl<'p, A, I> FusedIterator for TinyVecSplice<'p, A, I>
1275where
1276  A: Array,
1277  I: Iterator<Item = A::Item>,
1278{
1279}
1280
1281impl<'p, A, I> DoubleEndedIterator for TinyVecSplice<'p, A, I>
1282where
1283  A: Array,
1284  I: Iterator<Item = A::Item> + DoubleEndedIterator,
1285{
1286  #[inline]
1287  fn next_back(&mut self) -> Option<A::Item> {
1288    if self.removal_start < self.removal_end {
1289      match self.replacement.next_back() {
1290        Some(replacement) => {
1291          let removed = core::mem::replace(
1292            &mut self.parent[self.removal_end - 1],
1293            replacement,
1294          );
1295          self.removal_end -= 1;
1296          Some(removed)
1297        }
1298        None => {
1299          let removed = self.parent.remove(self.removal_end - 1);
1300          self.removal_end -= 1;
1301          Some(removed)
1302        }
1303      }
1304    } else {
1305      None
1306    }
1307  }
1308}
1309
1310impl<'p, A: Array, I: Iterator<Item = A::Item>> Drop
1311  for TinyVecSplice<'p, A, I>
1312{
1313  #[inline]
1314  fn drop(&mut self) {
1315    for _ in self.by_ref() {}
1316
1317    let (lower_bound, _) = self.replacement.size_hint();
1318    self.parent.reserve(lower_bound);
1319
1320    for replacement in self.replacement.by_ref() {
1321      self.parent.insert(self.removal_end, replacement);
1322      self.removal_end += 1;
1323    }
1324  }
1325}
1326
1327impl<A: Array> AsMut<[A::Item]> for TinyVec<A> {
1328  #[inline(always)]
1329  #[must_use]
1330  fn as_mut(&mut self) -> &mut [A::Item] {
1331    &mut *self
1332  }
1333}
1334
1335impl<A: Array> AsRef<[A::Item]> for TinyVec<A> {
1336  #[inline(always)]
1337  #[must_use]
1338  fn as_ref(&self) -> &[A::Item] {
1339    &*self
1340  }
1341}
1342
1343impl<A: Array> Borrow<[A::Item]> for TinyVec<A> {
1344  #[inline(always)]
1345  #[must_use]
1346  fn borrow(&self) -> &[A::Item] {
1347    &*self
1348  }
1349}
1350
1351impl<A: Array> BorrowMut<[A::Item]> for TinyVec<A> {
1352  #[inline(always)]
1353  #[must_use]
1354  fn borrow_mut(&mut self) -> &mut [A::Item] {
1355    &mut *self
1356  }
1357}
1358
1359impl<A: Array> Extend<A::Item> for TinyVec<A> {
1360  #[inline]
1361  fn extend<T: IntoIterator<Item = A::Item>>(&mut self, iter: T) {
1362    let iter = iter.into_iter();
1363    let (lower_bound, _) = iter.size_hint();
1364    self.reserve(lower_bound);
1365
1366    let a = match self {
1367      TinyVec::Heap(h) => return h.extend(iter),
1368      TinyVec::Inline(a) => a,
1369    };
1370
1371    let mut iter = a.fill(iter);
1372    let maybe = iter.next();
1373
1374    let surely = match maybe {
1375      Some(x) => x,
1376      None => return,
1377    };
1378
1379    let mut v = a.drain_to_vec_and_reserve(a.len());
1380    v.push(surely);
1381    v.extend(iter);
1382    *self = TinyVec::Heap(v);
1383  }
1384}
1385
1386impl<A: Array> From<ArrayVec<A>> for TinyVec<A> {
1387  #[inline(always)]
1388  #[must_use]
1389  fn from(arr: ArrayVec<A>) -> Self {
1390    TinyVec::Inline(arr)
1391  }
1392}
1393
1394impl<A: Array> From<A> for TinyVec<A> {
1395  #[inline]
1396  fn from(array: A) -> Self {
1397    TinyVec::Inline(ArrayVec::from(array))
1398  }
1399}
1400
1401impl<T, A> From<&'_ [T]> for TinyVec<A>
1402where
1403  T: Clone + Default,
1404  A: Array<Item = T>,
1405{
1406  #[inline]
1407  #[must_use]
1408  fn from(slice: &[T]) -> Self {
1409    if let Ok(arr) = ArrayVec::try_from(slice) {
1410      TinyVec::Inline(arr)
1411    } else {
1412      TinyVec::Heap(slice.into())
1413    }
1414  }
1415}
1416
1417impl<T, A> From<&'_ mut [T]> for TinyVec<A>
1418where
1419  T: Clone + Default,
1420  A: Array<Item = T>,
1421{
1422  #[inline]
1423  #[must_use]
1424  fn from(slice: &mut [T]) -> Self {
1425    Self::from(&*slice)
1426  }
1427}
1428
1429impl<A: Array> FromIterator<A::Item> for TinyVec<A> {
1430  #[inline]
1431  #[must_use]
1432  fn from_iter<T: IntoIterator<Item = A::Item>>(iter: T) -> Self {
1433    let mut av = Self::default();
1434    av.extend(iter);
1435    av
1436  }
1437}
1438
1439impl<A: Array> Into<Vec<A::Item>> for TinyVec<A> {
1440  /// Converts a `TinyVec` into a `Vec`.
1441  ///
1442  /// ## Examples
1443  ///
1444  /// ### Inline to Vec
1445  ///
1446  /// For `TinyVec::Inline(_)`,
1447  ///   `.into()` **does not** offer a performance advantage over `.to_vec()`.
1448  ///
1449  /// ```
1450  /// use core::mem::size_of_val as mem_size_of;
1451  /// use tinyvec::TinyVec;
1452  ///
1453  /// let v = TinyVec::from([0u8; 128]);
1454  /// assert_eq!(mem_size_of(&v), 136);
1455  ///
1456  /// let vec: Vec<_> = v.into();
1457  /// assert_eq!(mem_size_of(&vec), 24);
1458  /// ```
1459  ///
1460  /// ### Heap into Vec
1461  ///
1462  /// For `TinyVec::Heap(vec_data)`,
1463  ///   `.into()` will take `vec_data` without heap reallocation.
1464  ///
1465  /// ```
1466  /// use core::{
1467  ///   any::type_name_of_val as type_of, mem::size_of_val as mem_size_of,
1468  /// };
1469  /// use tinyvec::TinyVec;
1470  ///
1471  /// const fn from_heap<T: Default>(owned: Vec<T>) -> TinyVec<[T; 1]> {
1472  ///   TinyVec::Heap(owned)
1473  /// }
1474  ///
1475  /// let v = from_heap(vec![0u8; 128]);
1476  /// assert_eq!(v.len(), 128);
1477  /// assert_eq!(mem_size_of(&v), 24);
1478  /// assert!(type_of(&v).ends_with("TinyVec<[u8; 1]>"));
1479  ///
1480  /// let vec: Vec<_> = v.into();
1481  /// assert_eq!(mem_size_of(&vec), 24);
1482  /// assert!(type_of(&vec).ends_with("Vec<u8>"));
1483  /// ```
1484  #[inline]
1485  #[must_use]
1486  fn into(self) -> Vec<A::Item> {
1487    match self {
1488      Self::Heap(inner) => inner,
1489      Self::Inline(mut inner) => inner.drain_to_vec(),
1490    }
1491  }
1492}
1493
1494/// Iterator for consuming an `TinyVec` and returning owned elements.
1495#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
1496pub enum TinyVecIterator<A: Array> {
1497  #[allow(missing_docs)]
1498  Inline(ArrayVecIterator<A>),
1499  #[allow(missing_docs)]
1500  Heap(alloc::vec::IntoIter<A::Item>),
1501}
1502
1503impl<A: Array> TinyVecIterator<A> {
1504  impl_mirrored! {
1505    type Mirror = TinyVecIterator;
1506    /// Returns the remaining items of this iterator as a slice.
1507    #[inline]
1508    #[must_use]
1509    pub fn as_slice(self: &Self) -> &[A::Item];
1510  }
1511}
1512
1513impl<A: Array> FusedIterator for TinyVecIterator<A> {}
1514
1515impl<A: Array> Iterator for TinyVecIterator<A> {
1516  type Item = A::Item;
1517
1518  impl_mirrored! {
1519    type Mirror = TinyVecIterator;
1520
1521    #[inline]
1522    fn next(self: &mut Self) -> Option<Self::Item>;
1523
1524    #[inline(always)]
1525    #[must_use]
1526    fn size_hint(self: &Self) -> (usize, Option<usize>);
1527
1528    #[inline(always)]
1529    fn count(self: Self) -> usize;
1530
1531    #[inline]
1532    fn last(self: Self) -> Option<Self::Item>;
1533
1534    #[inline]
1535    fn nth(self: &mut Self, n: usize) -> Option<A::Item>;
1536  }
1537}
1538
1539impl<A: Array> DoubleEndedIterator for TinyVecIterator<A> {
1540  impl_mirrored! {
1541    type Mirror = TinyVecIterator;
1542
1543    #[inline]
1544    fn next_back(self: &mut Self) -> Option<Self::Item>;
1545
1546    #[inline]
1547    fn nth_back(self: &mut Self, n: usize) -> Option<Self::Item>;
1548  }
1549}
1550
1551impl<A: Array> ExactSizeIterator for TinyVecIterator<A> {
1552  impl_mirrored! {
1553    type Mirror = TinyVecIterator;
1554    #[inline]
1555    fn len(self: &Self) -> usize;
1556  }
1557}
1558
1559impl<A: Array> Debug for TinyVecIterator<A>
1560where
1561  A::Item: Debug,
1562{
1563  #[allow(clippy::missing_inline_in_public_items)]
1564  fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
1565    f.debug_tuple("TinyVecIterator").field(&self.as_slice()).finish()
1566  }
1567}
1568
1569impl<A: Array> IntoIterator for TinyVec<A> {
1570  type Item = A::Item;
1571  type IntoIter = TinyVecIterator<A>;
1572  #[inline(always)]
1573  #[must_use]
1574  fn into_iter(self) -> Self::IntoIter {
1575    match self {
1576      TinyVec::Inline(a) => TinyVecIterator::Inline(a.into_iter()),
1577      TinyVec::Heap(v) => TinyVecIterator::Heap(v.into_iter()),
1578    }
1579  }
1580}
1581
1582impl<'a, A: Array> IntoIterator for &'a mut TinyVec<A> {
1583  type Item = &'a mut A::Item;
1584  type IntoIter = core::slice::IterMut<'a, A::Item>;
1585  #[inline(always)]
1586  #[must_use]
1587  fn into_iter(self) -> Self::IntoIter {
1588    self.iter_mut()
1589  }
1590}
1591
1592impl<'a, A: Array> IntoIterator for &'a TinyVec<A> {
1593  type Item = &'a A::Item;
1594  type IntoIter = core::slice::Iter<'a, A::Item>;
1595  #[inline(always)]
1596  #[must_use]
1597  fn into_iter(self) -> Self::IntoIter {
1598    self.iter()
1599  }
1600}
1601
1602impl<A: Array> PartialEq for TinyVec<A>
1603where
1604  A::Item: PartialEq,
1605{
1606  #[inline]
1607  #[must_use]
1608  fn eq(&self, other: &Self) -> bool {
1609    self.as_slice().eq(other.as_slice())
1610  }
1611}
1612impl<A: Array> Eq for TinyVec<A> where A::Item: Eq {}
1613
1614impl<A: Array> PartialOrd for TinyVec<A>
1615where
1616  A::Item: PartialOrd,
1617{
1618  #[inline]
1619  #[must_use]
1620  fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
1621    self.as_slice().partial_cmp(other.as_slice())
1622  }
1623}
1624impl<A: Array> Ord for TinyVec<A>
1625where
1626  A::Item: Ord,
1627{
1628  #[inline]
1629  #[must_use]
1630  fn cmp(&self, other: &Self) -> core::cmp::Ordering {
1631    self.as_slice().cmp(other.as_slice())
1632  }
1633}
1634
1635impl<A: Array> PartialEq<&A> for TinyVec<A>
1636where
1637  A::Item: PartialEq,
1638{
1639  #[inline]
1640  #[must_use]
1641  fn eq(&self, other: &&A) -> bool {
1642    self.as_slice().eq(other.as_slice())
1643  }
1644}
1645
1646impl<A: Array> PartialEq<&[A::Item]> for TinyVec<A>
1647where
1648  A::Item: PartialEq,
1649{
1650  #[inline]
1651  #[must_use]
1652  fn eq(&self, other: &&[A::Item]) -> bool {
1653    self.as_slice().eq(*other)
1654  }
1655}
1656
1657impl<A: Array> Hash for TinyVec<A>
1658where
1659  A::Item: Hash,
1660{
1661  #[inline]
1662  fn hash<H: Hasher>(&self, state: &mut H) {
1663    self.as_slice().hash(state)
1664  }
1665}
1666
1667// // // // // // // //
1668// Formatting impls
1669// // // // // // // //
1670
1671impl<A: Array> Binary for TinyVec<A>
1672where
1673  A::Item: Binary,
1674{
1675  #[allow(clippy::missing_inline_in_public_items)]
1676  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1677    write!(f, "[")?;
1678    if f.alternate() {
1679      write!(f, "\n    ")?;
1680    }
1681    for (i, elem) in self.iter().enumerate() {
1682      if i > 0 {
1683        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1684      }
1685      Binary::fmt(elem, f)?;
1686    }
1687    if f.alternate() {
1688      write!(f, ",\n")?;
1689    }
1690    write!(f, "]")
1691  }
1692}
1693
1694impl<A: Array> Debug for TinyVec<A>
1695where
1696  A::Item: Debug,
1697{
1698  #[allow(clippy::missing_inline_in_public_items)]
1699  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1700    write!(f, "[")?;
1701    if f.alternate() && !self.is_empty() {
1702      write!(f, "\n    ")?;
1703    }
1704    for (i, elem) in self.iter().enumerate() {
1705      if i > 0 {
1706        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1707      }
1708      Debug::fmt(elem, f)?;
1709    }
1710    if f.alternate() && !self.is_empty() {
1711      write!(f, ",\n")?;
1712    }
1713    write!(f, "]")
1714  }
1715}
1716
1717impl<A: Array> Display for TinyVec<A>
1718where
1719  A::Item: Display,
1720{
1721  #[allow(clippy::missing_inline_in_public_items)]
1722  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1723    write!(f, "[")?;
1724    if f.alternate() {
1725      write!(f, "\n    ")?;
1726    }
1727    for (i, elem) in self.iter().enumerate() {
1728      if i > 0 {
1729        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1730      }
1731      Display::fmt(elem, f)?;
1732    }
1733    if f.alternate() {
1734      write!(f, ",\n")?;
1735    }
1736    write!(f, "]")
1737  }
1738}
1739
1740impl<A: Array> LowerExp for TinyVec<A>
1741where
1742  A::Item: LowerExp,
1743{
1744  #[allow(clippy::missing_inline_in_public_items)]
1745  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1746    write!(f, "[")?;
1747    if f.alternate() {
1748      write!(f, "\n    ")?;
1749    }
1750    for (i, elem) in self.iter().enumerate() {
1751      if i > 0 {
1752        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1753      }
1754      LowerExp::fmt(elem, f)?;
1755    }
1756    if f.alternate() {
1757      write!(f, ",\n")?;
1758    }
1759    write!(f, "]")
1760  }
1761}
1762
1763impl<A: Array> LowerHex for TinyVec<A>
1764where
1765  A::Item: LowerHex,
1766{
1767  #[allow(clippy::missing_inline_in_public_items)]
1768  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1769    write!(f, "[")?;
1770    if f.alternate() {
1771      write!(f, "\n    ")?;
1772    }
1773    for (i, elem) in self.iter().enumerate() {
1774      if i > 0 {
1775        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1776      }
1777      LowerHex::fmt(elem, f)?;
1778    }
1779    if f.alternate() {
1780      write!(f, ",\n")?;
1781    }
1782    write!(f, "]")
1783  }
1784}
1785
1786impl<A: Array> Octal for TinyVec<A>
1787where
1788  A::Item: Octal,
1789{
1790  #[allow(clippy::missing_inline_in_public_items)]
1791  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1792    write!(f, "[")?;
1793    if f.alternate() {
1794      write!(f, "\n    ")?;
1795    }
1796    for (i, elem) in self.iter().enumerate() {
1797      if i > 0 {
1798        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1799      }
1800      Octal::fmt(elem, f)?;
1801    }
1802    if f.alternate() {
1803      write!(f, ",\n")?;
1804    }
1805    write!(f, "]")
1806  }
1807}
1808
1809impl<A: Array> Pointer for TinyVec<A>
1810where
1811  A::Item: Pointer,
1812{
1813  #[allow(clippy::missing_inline_in_public_items)]
1814  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1815    write!(f, "[")?;
1816    if f.alternate() {
1817      write!(f, "\n    ")?;
1818    }
1819    for (i, elem) in self.iter().enumerate() {
1820      if i > 0 {
1821        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1822      }
1823      Pointer::fmt(elem, f)?;
1824    }
1825    if f.alternate() {
1826      write!(f, ",\n")?;
1827    }
1828    write!(f, "]")
1829  }
1830}
1831
1832impl<A: Array> UpperExp for TinyVec<A>
1833where
1834  A::Item: UpperExp,
1835{
1836  #[allow(clippy::missing_inline_in_public_items)]
1837  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1838    write!(f, "[")?;
1839    if f.alternate() {
1840      write!(f, "\n    ")?;
1841    }
1842    for (i, elem) in self.iter().enumerate() {
1843      if i > 0 {
1844        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1845      }
1846      UpperExp::fmt(elem, f)?;
1847    }
1848    if f.alternate() {
1849      write!(f, ",\n")?;
1850    }
1851    write!(f, "]")
1852  }
1853}
1854
1855impl<A: Array> UpperHex for TinyVec<A>
1856where
1857  A::Item: UpperHex,
1858{
1859  #[allow(clippy::missing_inline_in_public_items)]
1860  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1861    write!(f, "[")?;
1862    if f.alternate() {
1863      write!(f, "\n    ")?;
1864    }
1865    for (i, elem) in self.iter().enumerate() {
1866      if i > 0 {
1867        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1868      }
1869      UpperHex::fmt(elem, f)?;
1870    }
1871    if f.alternate() {
1872      write!(f, ",\n")?;
1873    }
1874    write!(f, "]")
1875  }
1876}
1877
1878#[cfg(feature = "serde")]
1879#[cfg_attr(docs_rs, doc(cfg(feature = "alloc")))]
1880struct TinyVecVisitor<A: Array>(PhantomData<A>);
1881
1882#[cfg(feature = "serde")]
1883impl<'de, A: Array> Visitor<'de> for TinyVecVisitor<A>
1884where
1885  A::Item: Deserialize<'de>,
1886{
1887  type Value = TinyVec<A>;
1888
1889  fn expecting(
1890    &self, formatter: &mut core::fmt::Formatter,
1891  ) -> core::fmt::Result {
1892    formatter.write_str("a sequence")
1893  }
1894
1895  fn visit_seq<S>(self, mut seq: S) -> Result<Self::Value, S::Error>
1896  where
1897    S: SeqAccess<'de>,
1898  {
1899    let mut new_tinyvec = match seq.size_hint() {
1900      Some(expected_size) => TinyVec::with_capacity(expected_size),
1901      None => Default::default(),
1902    };
1903
1904    while let Some(value) = seq.next_element()? {
1905      new_tinyvec.push(value);
1906    }
1907
1908    Ok(new_tinyvec)
1909  }
1910}