zerocopy/
byte_slice.rs

1// Copyright 2024 The Fuchsia Authors
2//
3// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6// This file may not be copied, modified, or distributed except according to
7// those terms.
8
9//! Traits for types that encapsulate a `[u8]`.
10//!
11//! These traits are used to bound the `B` parameter of [`Ref`].
12
13use core::{
14    cell,
15    ops::{Deref, DerefMut},
16};
17
18#[cfg(doc)]
19use crate::Ref;
20
21// For each trait polyfill, as soon as the corresponding feature is stable, the
22// polyfill import will be unused because method/function resolution will prefer
23// the inherent method/function over a trait method/function. Thus, we suppress
24// the `unused_imports` warning.
25//
26// See the documentation on `util::polyfills` for more information.
27#[allow(unused_imports)]
28use crate::util::polyfills::{self, NonNullExt as _, NumExt as _};
29
30/// A mutable or immutable reference to a byte slice.
31///
32/// `ByteSlice` abstracts over the mutability of a byte slice reference, and is
33/// implemented for various special reference types such as
34/// [`Ref<[u8]>`](core::cell::Ref) and [`RefMut<[u8]>`](core::cell::RefMut).
35///
36/// # Safety
37///
38/// Implementations of `ByteSlice` must promise that their implementations of
39/// [`Deref`] and [`DerefMut`] are "stable". In particular, given `B: ByteSlice`
40/// and `b: B`, two calls, each to either `b.deref()` or `b.deref_mut()`, must
41/// return a byte slice with the same address and length. This must hold even if
42/// the two calls are separated by an arbitrary sequence of calls to methods on
43/// `ByteSlice`, [`ByteSliceMut`], [`IntoByteSlice`], or [`IntoByteSliceMut`],
44/// or on their super-traits. This does *not* need to hold if the two calls are
45/// separated by any method calls, field accesses, or field modifications *other
46/// than* those from these traits.
47///
48/// Note that this also implies that, given `b: B`, the address and length
49/// cannot be modified via objects other than `b`, either on the same thread or
50/// on another thread.
51pub unsafe trait ByteSlice: Deref<Target = [u8]> + Sized {}
52
53/// A mutable reference to a byte slice.
54///
55/// `ByteSliceMut` abstracts over various ways of storing a mutable reference to
56/// a byte slice, and is implemented for various special reference types such as
57/// `RefMut<[u8]>`.
58///
59/// `ByteSliceMut` is a shorthand for [`ByteSlice`] and [`DerefMut`].
60pub trait ByteSliceMut: ByteSlice + DerefMut {}
61impl<B: ByteSlice + DerefMut> ByteSliceMut for B {}
62
63/// A [`ByteSlice`] which can be copied without violating dereference stability.
64///
65/// # Safety
66///
67/// If `B: CopyableByteSlice`, then the dereference stability properties
68/// required by [`ByteSlice`] (see that trait's safety documentation) do not
69/// only hold regarding two calls to `b.deref()` or `b.deref_mut()`, but also
70/// hold regarding `c.deref()` or `c.deref_mut()`, where `c` is produced by
71/// copying `b`.
72pub unsafe trait CopyableByteSlice: ByteSlice + Copy + CloneableByteSlice {}
73
74/// A [`ByteSlice`] which can be cloned without violating dereference stability.
75///
76/// # Safety
77///
78/// If `B: CloneableByteSlice`, then the dereference stability properties
79/// required by [`ByteSlice`] (see that trait's safety documentation) do not
80/// only hold regarding two calls to `b.deref()` or `b.deref_mut()`, but also
81/// hold regarding `c.deref()` or `c.deref_mut()`, where `c` is produced by
82/// `b.clone()`, `b.clone().clone()`, etc.
83pub unsafe trait CloneableByteSlice: ByteSlice + Clone {}
84
85/// A [`ByteSlice`] that can be split in two.
86///
87/// # Safety
88///
89/// Unsafe code may depend for its soundness on the assumption that `split_at`
90/// and `split_at_unchecked` are implemented correctly. In particular, given `B:
91/// SplitByteSlice` and `b: B`, if `b.deref()` returns a byte slice with address
92/// `addr` and length `len`, then if `split <= len`, both of these
93/// invocations:
94/// - `b.split_at(split)`
95/// - `b.split_at_unchecked(split)`
96///
97/// ...will return `(first, second)` such that:
98/// - `first`'s address is `addr` and its length is `split`
99/// - `second`'s address is `addr + split` and its length is `len - split`
100pub unsafe trait SplitByteSlice: ByteSlice {
101    /// Attempts to split `self` at the midpoint.
102    ///
103    /// `s.split_at(mid)` returns `Ok((s[..mid], s[mid..]))` if `mid <=
104    /// s.deref().len()` and otherwise returns `Err(s)`.
105    ///
106    /// # Safety
107    ///
108    /// Unsafe code may rely on this function correctly implementing the above
109    /// functionality.
110    #[inline]
111    fn split_at(self, mid: usize) -> Result<(Self, Self), Self> {
112        if mid <= self.deref().len() {
113            // SAFETY: Above, we ensure that `mid <= self.deref().len()`. By
114            // invariant on `ByteSlice`, a supertrait of `SplitByteSlice`,
115            // `.deref()` is guranteed to be "stable"; i.e., it will always
116            // dereference to a byte slice of the same address and length. Thus,
117            // we can be sure that the above precondition remains satisfied
118            // through the call to `split_at_unchecked`.
119            unsafe { Ok(self.split_at_unchecked(mid)) }
120        } else {
121            Err(self)
122        }
123    }
124
125    /// Splits the slice at the midpoint, possibly omitting bounds checks.
126    ///
127    /// `s.split_at_unchecked(mid)` returns `s[..mid]` and `s[mid..]`.
128    ///
129    /// # Safety
130    ///
131    /// `mid` must not be greater than `self.deref().len()`.
132    ///
133    /// # Panics
134    ///
135    /// Implementations of this method may choose to perform a bounds check and
136    /// panic if `mid > self.deref().len()`. They may also panic for any other
137    /// reason. Since it is optional, callers must not rely on this behavior for
138    /// soundness.
139    #[must_use]
140    unsafe fn split_at_unchecked(self, mid: usize) -> (Self, Self);
141}
142
143/// A shorthand for [`SplitByteSlice`] and [`ByteSliceMut`].
144pub trait SplitByteSliceMut: SplitByteSlice + ByteSliceMut {}
145impl<B: SplitByteSlice + ByteSliceMut> SplitByteSliceMut for B {}
146
147#[allow(clippy::missing_safety_doc)] // There's a `Safety` section on `into_byte_slice`.
148/// A [`ByteSlice`] that conveys no ownership, and so can be converted into a
149/// byte slice.
150///
151/// Some `ByteSlice` types (notably, the standard library's [`Ref`] type) convey
152/// ownership, and so they cannot soundly be moved by-value into a byte slice
153/// type (`&[u8]`). Some methods in this crate's API (such as [`Ref::into_ref`])
154/// are only compatible with `ByteSlice` types without these ownership
155/// semantics.
156///
157/// [`Ref`]: core::cell::Ref
158pub unsafe trait IntoByteSlice<'a>: ByteSlice {
159    /// Coverts `self` into a `&[u8]`.
160    ///
161    /// # Safety
162    ///
163    /// The returned reference has the same address and length as `self.deref()`
164    /// and `self.deref_mut()`.
165    ///
166    /// Note that, combined with the safety invariant on [`ByteSlice`], this
167    /// safety invariant implies that the returned reference is "stable" in the
168    /// sense described in the `ByteSlice` docs.
169    fn into_byte_slice(self) -> &'a [u8];
170}
171
172#[allow(clippy::missing_safety_doc)] // There's a `Safety` section on `into_byte_slice_mut`.
173/// A [`ByteSliceMut`] that conveys no ownership, and so can be converted into a
174/// mutable byte slice.
175///
176/// Some `ByteSliceMut` types (notably, the standard library's [`RefMut`] type)
177/// convey ownership, and so they cannot soundly be moved by-value into a byte
178/// slice type (`&mut [u8]`). Some methods in this crate's API (such as
179/// [`Ref::into_mut`]) are only compatible with `ByteSliceMut` types without
180/// these ownership semantics.
181///
182/// [`RefMut`]: core::cell::RefMut
183pub unsafe trait IntoByteSliceMut<'a>: IntoByteSlice<'a> + ByteSliceMut {
184    /// Coverts `self` into a `&mut [u8]`.
185    ///
186    /// # Safety
187    ///
188    /// The returned reference has the same address and length as `self.deref()`
189    /// and `self.deref_mut()`.
190    ///
191    /// Note that, combined with the safety invariant on [`ByteSlice`], this
192    /// safety invariant implies that the returned reference is "stable" in the
193    /// sense described in the `ByteSlice` docs.
194    fn into_byte_slice_mut(self) -> &'a mut [u8];
195}
196
197// TODO(#429): Add a "SAFETY" comment and remove this `allow`.
198#[allow(clippy::undocumented_unsafe_blocks)]
199unsafe impl ByteSlice for &[u8] {}
200
201// TODO(#429): Add a "SAFETY" comment and remove this `allow`.
202#[allow(clippy::undocumented_unsafe_blocks)]
203unsafe impl CopyableByteSlice for &[u8] {}
204
205// TODO(#429): Add a "SAFETY" comment and remove this `allow`.
206#[allow(clippy::undocumented_unsafe_blocks)]
207unsafe impl CloneableByteSlice for &[u8] {}
208
209// SAFETY: This delegates to `polyfills:split_at_unchecked`, which is documented
210// to correctly split `self` into two slices at the given `mid` point.
211unsafe impl SplitByteSlice for &[u8] {
212    #[inline]
213    unsafe fn split_at_unchecked(self, mid: usize) -> (Self, Self) {
214        // SAFETY: By contract on caller, `mid` is not greater than
215        // `bytes.len()`.
216        unsafe { (<[u8]>::get_unchecked(self, ..mid), <[u8]>::get_unchecked(self, mid..)) }
217    }
218}
219
220// SAFETY: See inline.
221unsafe impl<'a> IntoByteSlice<'a> for &'a [u8] {
222    #[inline(always)]
223    fn into_byte_slice(self) -> &'a [u8] {
224        // SAFETY: It would be patently insane to implement `<Deref for
225        // &[u8]>::deref` as anything other than `fn deref(&self) -> &[u8] {
226        // *self }`. Assuming this holds, then `self` is stable as required by
227        // `into_byte_slice`.
228        self
229    }
230}
231
232// TODO(#429): Add a "SAFETY" comment and remove this `allow`.
233#[allow(clippy::undocumented_unsafe_blocks)]
234unsafe impl ByteSlice for &mut [u8] {}
235
236// SAFETY: This delegates to `polyfills:split_at_mut_unchecked`, which is
237// documented to correctly split `self` into two slices at the given `mid`
238// point.
239unsafe impl SplitByteSlice for &mut [u8] {
240    #[inline]
241    unsafe fn split_at_unchecked(self, mid: usize) -> (Self, Self) {
242        use core::slice::from_raw_parts_mut;
243
244        // `l_ptr` is non-null, because `self` is non-null, by invariant on
245        // `&mut [u8]`.
246        let l_ptr = self.as_mut_ptr();
247
248        // SAFETY: By contract on caller, `mid` is not greater than
249        // `self.len()`.
250        let r_ptr = unsafe { l_ptr.add(mid) };
251
252        let l_len = mid;
253
254        // SAFETY: By contract on caller, `mid` is not greater than
255        // `self.len()`.
256        //
257        // TODO(#67): Remove this allow. See NumExt for more details.
258        #[allow(unstable_name_collisions, clippy::incompatible_msrv)]
259        let r_len = unsafe { self.len().unchecked_sub(mid) };
260
261        // SAFETY: These invocations of `from_raw_parts_mut` satisfy its
262        // documented safety preconditions [1]:
263        // - The data `l_ptr` and `r_ptr` are valid for both reads and writes of
264        //   `l_len` and `r_len` bytes, respectively, and they are trivially
265        //   aligned. In particular:
266        //   - The entire memory range of each slice is contained within a
267        //     single allocated object, since `l_ptr` and `r_ptr` are both
268        //     derived from within the address range of `self`.
269        //   - Both `l_ptr` and `r_ptr` are non-null and trivially aligned.
270        //     `self` is non-null by invariant on `&mut [u8]`, and the
271        //     operations that derive `l_ptr` and `r_ptr` from `self` do not
272        //     nullify either pointer.
273        // - The data `l_ptr` and `r_ptr` point to `l_len` and `r_len`,
274        //   respectively, consecutive properly initialized values of type `u8`.
275        //   This is true for `self` by invariant on `&mut [u8]`, and remains
276        //   true for these two sub-slices of `self`.
277        // - The memory referenced by the returned slice cannot be accessed
278        //   through any other pointer (not derived from the return value) for
279        //   the duration of lifetime `'a``, because:
280        //   - `split_at_unchecked` consumes `self` (which is not `Copy`),
281        //   - `split_at_unchecked` does not exfiltrate any references to this
282        //     memory, besides those references returned below,
283        //   - the returned slices are non-overlapping.
284        // - The individual sizes of the sub-slices of `self` are no larger than
285        //   `isize::MAX`, because their combined sizes are no larger than
286        //   `isize::MAX`, by invariant on `self`.
287        //
288        // [1] https://doc.rust-lang.org/std/slice/fn.from_raw_parts_mut.html#safety
289        unsafe { (from_raw_parts_mut(l_ptr, l_len), from_raw_parts_mut(r_ptr, r_len)) }
290    }
291}
292
293// SAFETY: See inline.
294unsafe impl<'a> IntoByteSlice<'a> for &'a mut [u8] {
295    #[inline(always)]
296    fn into_byte_slice(self) -> &'a [u8] {
297        // SAFETY: It would be patently insane to implement `<Deref for &mut
298        // [u8]>::deref` as anything other than `fn deref(&self) -> &[u8] {
299        // *self }`. Assuming this holds, then `self` is stable as required by
300        // `into_byte_slice`.
301        self
302    }
303}
304
305// SAFETY: See inline.
306unsafe impl<'a> IntoByteSliceMut<'a> for &'a mut [u8] {
307    #[inline(always)]
308    fn into_byte_slice_mut(self) -> &'a mut [u8] {
309        // SAFETY: It would be patently insane to implement `<DerefMut for &mut
310        // [u8]>::deref` as anything other than `fn deref_mut(&mut self) -> &mut
311        // [u8] { *self }`. Assuming this holds, then `self` is stable as
312        // required by `into_byte_slice_mut`.
313        self
314    }
315}
316
317// TODO(#429): Add a "SAFETY" comment and remove this `allow`.
318#[allow(clippy::undocumented_unsafe_blocks)]
319unsafe impl ByteSlice for cell::Ref<'_, [u8]> {}
320
321// SAFETY: This delegates to stdlib implementation of `Ref::map_split`, which is
322// assumed to be correct, and `SplitByteSlice::split_at_unchecked`, which is
323// documented to correctly split `self` into two slices at the given `mid`
324// point.
325unsafe impl SplitByteSlice for cell::Ref<'_, [u8]> {
326    #[inline]
327    unsafe fn split_at_unchecked(self, mid: usize) -> (Self, Self) {
328        cell::Ref::map_split(self, |slice|
329            // SAFETY: By precondition on caller, `mid` is not greater than
330            // `slice.len()`.
331            unsafe {
332                SplitByteSlice::split_at_unchecked(slice, mid)
333            })
334    }
335}
336
337// TODO(#429): Add a "SAFETY" comment and remove this `allow`.
338#[allow(clippy::undocumented_unsafe_blocks)]
339unsafe impl ByteSlice for cell::RefMut<'_, [u8]> {}
340
341// SAFETY: This delegates to stdlib implementation of `RefMut::map_split`, which
342// is assumed to be correct, and `SplitByteSlice::split_at_unchecked`, which is
343// documented to correctly split `self` into two slices at the given `mid`
344// point.
345unsafe impl SplitByteSlice for cell::RefMut<'_, [u8]> {
346    #[inline]
347    unsafe fn split_at_unchecked(self, mid: usize) -> (Self, Self) {
348        cell::RefMut::map_split(self, |slice|
349            // SAFETY: By precondition on caller, `mid` is not greater than
350            // `slice.len()`
351            unsafe {
352                SplitByteSlice::split_at_unchecked(slice, mid)
353            })
354    }
355}