zerocopy/
layout.rs

1// Copyright 2024 The Fuchsia Authors
2//
3// Licensed under the 2-Clause BSD License <LICENSE-BSD or
4// https://opensource.org/license/bsd-2-clause>, Apache License, Version 2.0
5// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
6// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
7// This file may not be copied, modified, or distributed except according to
8// those terms.
9
10use core::{mem, num::NonZeroUsize};
11
12use crate::util;
13
14/// The target pointer width, counted in bits.
15const POINTER_WIDTH_BITS: usize = mem::size_of::<usize>() * 8;
16
17/// The layout of a type which might be dynamically-sized.
18///
19/// `DstLayout` describes the layout of sized types, slice types, and "slice
20/// DSTs" - ie, those that are known by the type system to have a trailing slice
21/// (as distinguished from `dyn Trait` types - such types *might* have a
22/// trailing slice type, but the type system isn't aware of it).
23///
24/// Note that `DstLayout` does not have any internal invariants, so no guarantee
25/// is made that a `DstLayout` conforms to any of Rust's requirements regarding
26/// the layout of real Rust types or instances of types.
27#[doc(hidden)]
28#[allow(missing_debug_implementations, missing_copy_implementations)]
29#[cfg_attr(any(kani, test), derive(Copy, Clone, Debug, PartialEq, Eq))]
30pub struct DstLayout {
31    pub(crate) align: NonZeroUsize,
32    pub(crate) size_info: SizeInfo,
33}
34
35#[cfg_attr(any(kani, test), derive(Debug, PartialEq, Eq))]
36#[derive(Copy, Clone)]
37pub(crate) enum SizeInfo<E = usize> {
38    Sized { size: usize },
39    SliceDst(TrailingSliceLayout<E>),
40}
41
42#[cfg_attr(any(kani, test), derive(Debug, PartialEq, Eq))]
43#[derive(Copy, Clone)]
44pub(crate) struct TrailingSliceLayout<E = usize> {
45    // The offset of the first byte of the trailing slice field. Note that this
46    // is NOT the same as the minimum size of the type. For example, consider
47    // the following type:
48    //
49    //   struct Foo {
50    //       a: u16,
51    //       b: u8,
52    //       c: [u8],
53    //   }
54    //
55    // In `Foo`, `c` is at byte offset 3. When `c.len() == 0`, `c` is followed
56    // by a padding byte.
57    pub(crate) offset: usize,
58    // The size of the element type of the trailing slice field.
59    pub(crate) elem_size: E,
60}
61
62impl SizeInfo {
63    /// Attempts to create a `SizeInfo` from `Self` in which `elem_size` is a
64    /// `NonZeroUsize`. If `elem_size` is 0, returns `None`.
65    #[allow(unused)]
66    const fn try_to_nonzero_elem_size(&self) -> Option<SizeInfo<NonZeroUsize>> {
67        Some(match *self {
68            SizeInfo::Sized { size } => SizeInfo::Sized { size },
69            SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) => {
70                if let Some(elem_size) = NonZeroUsize::new(elem_size) {
71                    SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size })
72                } else {
73                    return None;
74                }
75            }
76        })
77    }
78}
79
80#[doc(hidden)]
81#[derive(Copy, Clone)]
82#[cfg_attr(test, derive(Debug))]
83#[allow(missing_debug_implementations)]
84pub enum CastType {
85    Prefix,
86    Suffix,
87}
88
89#[cfg_attr(test, derive(Debug))]
90pub(crate) enum MetadataCastError {
91    Alignment,
92    Size,
93}
94
95impl DstLayout {
96    /// The minimum possible alignment of a type.
97    const MIN_ALIGN: NonZeroUsize = match NonZeroUsize::new(1) {
98        Some(min_align) => min_align,
99        None => const_unreachable!(),
100    };
101
102    /// The maximum theoretic possible alignment of a type.
103    ///
104    /// For compatibility with future Rust versions, this is defined as the
105    /// maximum power-of-two that fits into a `usize`. See also
106    /// [`DstLayout::CURRENT_MAX_ALIGN`].
107    pub(crate) const THEORETICAL_MAX_ALIGN: NonZeroUsize =
108        match NonZeroUsize::new(1 << (POINTER_WIDTH_BITS - 1)) {
109            Some(max_align) => max_align,
110            None => const_unreachable!(),
111        };
112
113    /// The current, documented max alignment of a type \[1\].
114    ///
115    /// \[1\] Per <https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers>:
116    ///
117    ///   The alignment value must be a power of two from 1 up to
118    ///   2<sup>29</sup>.
119    #[cfg(not(kani))]
120    pub(crate) const CURRENT_MAX_ALIGN: NonZeroUsize = match NonZeroUsize::new(1 << 28) {
121        Some(max_align) => max_align,
122        None => const_unreachable!(),
123    };
124
125    /// Constructs a `DstLayout` for a zero-sized type with `repr_align`
126    /// alignment (or 1). If `repr_align` is provided, then it must be a power
127    /// of two.
128    ///
129    /// # Panics
130    ///
131    /// This function panics if the supplied `repr_align` is not a power of two.
132    ///
133    /// # Safety
134    ///
135    /// Unsafe code may assume that the contract of this function is satisfied.
136    #[doc(hidden)]
137    #[must_use]
138    #[inline]
139    pub const fn new_zst(repr_align: Option<NonZeroUsize>) -> DstLayout {
140        let align = match repr_align {
141            Some(align) => align,
142            None => Self::MIN_ALIGN,
143        };
144
145        const_assert!(align.get().is_power_of_two());
146
147        DstLayout { align, size_info: SizeInfo::Sized { size: 0 } }
148    }
149
150    /// Constructs a `DstLayout` which describes `T`.
151    ///
152    /// # Safety
153    ///
154    /// Unsafe code may assume that `DstLayout` is the correct layout for `T`.
155    #[doc(hidden)]
156    #[must_use]
157    #[inline]
158    pub const fn for_type<T>() -> DstLayout {
159        // SAFETY: `align` is correct by construction. `T: Sized`, and so it is
160        // sound to initialize `size_info` to `SizeInfo::Sized { size }`; the
161        // `size` field is also correct by construction.
162        DstLayout {
163            align: match NonZeroUsize::new(mem::align_of::<T>()) {
164                Some(align) => align,
165                None => const_unreachable!(),
166            },
167            size_info: SizeInfo::Sized { size: mem::size_of::<T>() },
168        }
169    }
170
171    /// Constructs a `DstLayout` which describes `[T]`.
172    ///
173    /// # Safety
174    ///
175    /// Unsafe code may assume that `DstLayout` is the correct layout for `[T]`.
176    pub(crate) const fn for_slice<T>() -> DstLayout {
177        // SAFETY: The alignment of a slice is equal to the alignment of its
178        // element type, and so `align` is initialized correctly.
179        //
180        // Since this is just a slice type, there is no offset between the
181        // beginning of the type and the beginning of the slice, so it is
182        // correct to set `offset: 0`. The `elem_size` is correct by
183        // construction. Since `[T]` is a (degenerate case of a) slice DST, it
184        // is correct to initialize `size_info` to `SizeInfo::SliceDst`.
185        DstLayout {
186            align: match NonZeroUsize::new(mem::align_of::<T>()) {
187                Some(align) => align,
188                None => const_unreachable!(),
189            },
190            size_info: SizeInfo::SliceDst(TrailingSliceLayout {
191                offset: 0,
192                elem_size: mem::size_of::<T>(),
193            }),
194        }
195    }
196
197    /// Like `Layout::extend`, this creates a layout that describes a record
198    /// whose layout consists of `self` followed by `next` that includes the
199    /// necessary inter-field padding, but not any trailing padding.
200    ///
201    /// In order to match the layout of a `#[repr(C)]` struct, this method
202    /// should be invoked for each field in declaration order. To add trailing
203    /// padding, call `DstLayout::pad_to_align` after extending the layout for
204    /// all fields. If `self` corresponds to a type marked with
205    /// `repr(packed(N))`, then `repr_packed` should be set to `Some(N)`,
206    /// otherwise `None`.
207    ///
208    /// This method cannot be used to match the layout of a record with the
209    /// default representation, as that representation is mostly unspecified.
210    ///
211    /// # Safety
212    ///
213    /// If a (potentially hypothetical) valid `repr(C)` Rust type begins with
214    /// fields whose layout are `self`, and those fields are immediately
215    /// followed by a field whose layout is `field`, then unsafe code may rely
216    /// on `self.extend(field, repr_packed)` producing a layout that correctly
217    /// encompasses those two components.
218    ///
219    /// We make no guarantees to the behavior of this method if these fragments
220    /// cannot appear in a valid Rust type (e.g., the concatenation of the
221    /// layouts would lead to a size larger than `isize::MAX`).
222    #[doc(hidden)]
223    #[must_use]
224    #[inline]
225    pub const fn extend(self, field: DstLayout, repr_packed: Option<NonZeroUsize>) -> Self {
226        use util::{max, min, padding_needed_for};
227
228        // If `repr_packed` is `None`, there are no alignment constraints, and
229        // the value can be defaulted to `THEORETICAL_MAX_ALIGN`.
230        let max_align = match repr_packed {
231            Some(max_align) => max_align,
232            None => Self::THEORETICAL_MAX_ALIGN,
233        };
234
235        const_assert!(max_align.get().is_power_of_two());
236
237        // We use Kani to prove that this method is robust to future increases
238        // in Rust's maximum allowed alignment. However, if such a change ever
239        // actually occurs, we'd like to be notified via assertion failures.
240        #[cfg(not(kani))]
241        {
242            const_debug_assert!(self.align.get() <= DstLayout::CURRENT_MAX_ALIGN.get());
243            const_debug_assert!(field.align.get() <= DstLayout::CURRENT_MAX_ALIGN.get());
244            if let Some(repr_packed) = repr_packed {
245                const_debug_assert!(repr_packed.get() <= DstLayout::CURRENT_MAX_ALIGN.get());
246            }
247        }
248
249        // The field's alignment is clamped by `repr_packed` (i.e., the
250        // `repr(packed(N))` attribute, if any) [1].
251        //
252        // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers:
253        //
254        //   The alignments of each field, for the purpose of positioning
255        //   fields, is the smaller of the specified alignment and the alignment
256        //   of the field's type.
257        let field_align = min(field.align, max_align);
258
259        // The struct's alignment is the maximum of its previous alignment and
260        // `field_align`.
261        let align = max(self.align, field_align);
262
263        let size_info = match self.size_info {
264            // If the layout is already a DST, we panic; DSTs cannot be extended
265            // with additional fields.
266            SizeInfo::SliceDst(..) => const_panic!("Cannot extend a DST with additional fields."),
267
268            SizeInfo::Sized { size: preceding_size } => {
269                // Compute the minimum amount of inter-field padding needed to
270                // satisfy the field's alignment, and offset of the trailing
271                // field. [1]
272                //
273                // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers:
274                //
275                //   Inter-field padding is guaranteed to be the minimum
276                //   required in order to satisfy each field's (possibly
277                //   altered) alignment.
278                let padding = padding_needed_for(preceding_size, field_align);
279
280                // This will not panic (and is proven to not panic, with Kani)
281                // if the layout components can correspond to a leading layout
282                // fragment of a valid Rust type, but may panic otherwise (e.g.,
283                // combining or aligning the components would create a size
284                // exceeding `isize::MAX`).
285                let offset = match preceding_size.checked_add(padding) {
286                    Some(offset) => offset,
287                    None => const_panic!("Adding padding to `self`'s size overflows `usize`."),
288                };
289
290                match field.size_info {
291                    SizeInfo::Sized { size: field_size } => {
292                        // If the trailing field is sized, the resulting layout
293                        // will be sized. Its size will be the sum of the
294                        // preceeding layout, the size of the new field, and the
295                        // size of inter-field padding between the two.
296                        //
297                        // This will not panic (and is proven with Kani to not
298                        // panic) if the layout components can correspond to a
299                        // leading layout fragment of a valid Rust type, but may
300                        // panic otherwise (e.g., combining or aligning the
301                        // components would create a size exceeding
302                        // `usize::MAX`).
303                        let size = match offset.checked_add(field_size) {
304                            Some(size) => size,
305                            None => const_panic!("`field` cannot be appended without the total size overflowing `usize`"),
306                        };
307                        SizeInfo::Sized { size }
308                    }
309                    SizeInfo::SliceDst(TrailingSliceLayout {
310                        offset: trailing_offset,
311                        elem_size,
312                    }) => {
313                        // If the trailing field is dynamically sized, so too
314                        // will the resulting layout. The offset of the trailing
315                        // slice component is the sum of the offset of the
316                        // trailing field and the trailing slice offset within
317                        // that field.
318                        //
319                        // This will not panic (and is proven with Kani to not
320                        // panic) if the layout components can correspond to a
321                        // leading layout fragment of a valid Rust type, but may
322                        // panic otherwise (e.g., combining or aligning the
323                        // components would create a size exceeding
324                        // `usize::MAX`).
325                        let offset = match offset.checked_add(trailing_offset) {
326                            Some(offset) => offset,
327                            None => const_panic!("`field` cannot be appended without the total size overflowing `usize`"),
328                        };
329                        SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size })
330                    }
331                }
332            }
333        };
334
335        DstLayout { align, size_info }
336    }
337
338    /// Like `Layout::pad_to_align`, this routine rounds the size of this layout
339    /// up to the nearest multiple of this type's alignment or `repr_packed`
340    /// (whichever is less). This method leaves DST layouts unchanged, since the
341    /// trailing padding of DSTs is computed at runtime.
342    ///
343    /// In order to match the layout of a `#[repr(C)]` struct, this method
344    /// should be invoked after the invocations of [`DstLayout::extend`]. If
345    /// `self` corresponds to a type marked with `repr(packed(N))`, then
346    /// `repr_packed` should be set to `Some(N)`, otherwise `None`.
347    ///
348    /// This method cannot be used to match the layout of a record with the
349    /// default representation, as that representation is mostly unspecified.
350    ///
351    /// # Safety
352    ///
353    /// If a (potentially hypothetical) valid `repr(C)` type begins with fields
354    /// whose layout are `self` followed only by zero or more bytes of trailing
355    /// padding (not included in `self`), then unsafe code may rely on
356    /// `self.pad_to_align(repr_packed)` producing a layout that correctly
357    /// encapsulates the layout of that type.
358    ///
359    /// We make no guarantees to the behavior of this method if `self` cannot
360    /// appear in a valid Rust type (e.g., because the addition of trailing
361    /// padding would lead to a size larger than `isize::MAX`).
362    #[doc(hidden)]
363    #[must_use]
364    #[inline]
365    pub const fn pad_to_align(self) -> Self {
366        use util::padding_needed_for;
367
368        let size_info = match self.size_info {
369            // For sized layouts, we add the minimum amount of trailing padding
370            // needed to satisfy alignment.
371            SizeInfo::Sized { size: unpadded_size } => {
372                let padding = padding_needed_for(unpadded_size, self.align);
373                let size = match unpadded_size.checked_add(padding) {
374                    Some(size) => size,
375                    None => const_panic!("Adding padding caused size to overflow `usize`."),
376                };
377                SizeInfo::Sized { size }
378            }
379            // For DST layouts, trailing padding depends on the length of the
380            // trailing DST and is computed at runtime. This does not alter the
381            // offset or element size of the layout, so we leave `size_info`
382            // unchanged.
383            size_info @ SizeInfo::SliceDst(_) => size_info,
384        };
385
386        DstLayout { align: self.align, size_info }
387    }
388
389    /// Validates that a cast is sound from a layout perspective.
390    ///
391    /// Validates that the size and alignment requirements of a type with the
392    /// layout described in `self` would not be violated by performing a
393    /// `cast_type` cast from a pointer with address `addr` which refers to a
394    /// memory region of size `bytes_len`.
395    ///
396    /// If the cast is valid, `validate_cast_and_convert_metadata` returns
397    /// `(elems, split_at)`. If `self` describes a dynamically-sized type, then
398    /// `elems` is the maximum number of trailing slice elements for which a
399    /// cast would be valid (for sized types, `elem` is meaningless and should
400    /// be ignored). `split_at` is the index at which to split the memory region
401    /// in order for the prefix (suffix) to contain the result of the cast, and
402    /// in order for the remaining suffix (prefix) to contain the leftover
403    /// bytes.
404    ///
405    /// There are three conditions under which a cast can fail:
406    /// - The smallest possible value for the type is larger than the provided
407    ///   memory region
408    /// - A prefix cast is requested, and `addr` does not satisfy `self`'s
409    ///   alignment requirement
410    /// - A suffix cast is requested, and `addr + bytes_len` does not satisfy
411    ///   `self`'s alignment requirement (as a consequence, since all instances
412    ///   of the type are a multiple of its alignment, no size for the type will
413    ///   result in a starting address which is properly aligned)
414    ///
415    /// # Safety
416    ///
417    /// The caller may assume that this implementation is correct, and may rely
418    /// on that assumption for the soundness of their code. In particular, the
419    /// caller may assume that, if `validate_cast_and_convert_metadata` returns
420    /// `Some((elems, split_at))`, then:
421    /// - A pointer to the type (for dynamically sized types, this includes
422    ///   `elems` as its pointer metadata) describes an object of size `size <=
423    ///   bytes_len`
424    /// - If this is a prefix cast:
425    ///   - `addr` satisfies `self`'s alignment
426    ///   - `size == split_at`
427    /// - If this is a suffix cast:
428    ///   - `split_at == bytes_len - size`
429    ///   - `addr + split_at` satisfies `self`'s alignment
430    ///
431    /// Note that this method does *not* ensure that a pointer constructed from
432    /// its return values will be a valid pointer. In particular, this method
433    /// does not reason about `isize` overflow, which is a requirement of many
434    /// Rust pointer APIs, and may at some point be determined to be a validity
435    /// invariant of pointer types themselves. This should never be a problem so
436    /// long as the arguments to this method are derived from a known-valid
437    /// pointer (e.g., one derived from a safe Rust reference), but it is
438    /// nonetheless the caller's responsibility to justify that pointer
439    /// arithmetic will not overflow based on a safety argument *other than* the
440    /// mere fact that this method returned successfully.
441    ///
442    /// # Panics
443    ///
444    /// `validate_cast_and_convert_metadata` will panic if `self` describes a
445    /// DST whose trailing slice element is zero-sized.
446    ///
447    /// If `addr + bytes_len` overflows `usize`,
448    /// `validate_cast_and_convert_metadata` may panic, or it may return
449    /// incorrect results. No guarantees are made about when
450    /// `validate_cast_and_convert_metadata` will panic. The caller should not
451    /// rely on `validate_cast_and_convert_metadata` panicking in any particular
452    /// condition, even if `debug_assertions` are enabled.
453    #[allow(unused)]
454    #[inline(always)]
455    pub(crate) const fn validate_cast_and_convert_metadata(
456        &self,
457        addr: usize,
458        bytes_len: usize,
459        cast_type: CastType,
460    ) -> Result<(usize, usize), MetadataCastError> {
461        // `debug_assert!`, but with `#[allow(clippy::arithmetic_side_effects)]`.
462        macro_rules! __const_debug_assert {
463            ($e:expr $(, $msg:expr)?) => {
464                const_debug_assert!({
465                    #[allow(clippy::arithmetic_side_effects)]
466                    let e = $e;
467                    e
468                } $(, $msg)?);
469            };
470        }
471
472        // Note that, in practice, `self` is always a compile-time constant. We
473        // do this check earlier than needed to ensure that we always panic as a
474        // result of bugs in the program (such as calling this function on an
475        // invalid type) instead of allowing this panic to be hidden if the cast
476        // would have failed anyway for runtime reasons (such as a too-small
477        // memory region).
478        //
479        // TODO(#67): Once our MSRV is 1.65, use let-else:
480        // https://blog.rust-lang.org/2022/11/03/Rust-1.65.0.html#let-else-statements
481        let size_info = match self.size_info.try_to_nonzero_elem_size() {
482            Some(size_info) => size_info,
483            None => const_panic!("attempted to cast to slice type with zero-sized element"),
484        };
485
486        // Precondition
487        __const_debug_assert!(
488            addr.checked_add(bytes_len).is_some(),
489            "`addr` + `bytes_len` > usize::MAX"
490        );
491
492        // Alignment checks go in their own block to avoid introducing variables
493        // into the top-level scope.
494        {
495            // We check alignment for `addr` (for prefix casts) or `addr +
496            // bytes_len` (for suffix casts). For a prefix cast, the correctness
497            // of this check is trivial - `addr` is the address the object will
498            // live at.
499            //
500            // For a suffix cast, we know that all valid sizes for the type are
501            // a multiple of the alignment (and by safety precondition, we know
502            // `DstLayout` may only describe valid Rust types). Thus, a
503            // validly-sized instance which lives at a validly-aligned address
504            // must also end at a validly-aligned address. Thus, if the end
505            // address for a suffix cast (`addr + bytes_len`) is not aligned,
506            // then no valid start address will be aligned either.
507            let offset = match cast_type {
508                CastType::Prefix => 0,
509                CastType::Suffix => bytes_len,
510            };
511
512            // Addition is guaranteed not to overflow because `offset <=
513            // bytes_len`, and `addr + bytes_len <= usize::MAX` is a
514            // precondition of this method. Modulus is guaranteed not to divide
515            // by 0 because `align` is non-zero.
516            #[allow(clippy::arithmetic_side_effects)]
517            if (addr + offset) % self.align.get() != 0 {
518                return Err(MetadataCastError::Alignment);
519            }
520        }
521
522        let (elems, self_bytes) = match size_info {
523            SizeInfo::Sized { size } => {
524                if size > bytes_len {
525                    return Err(MetadataCastError::Size);
526                }
527                (0, size)
528            }
529            SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) => {
530                // Calculate the maximum number of bytes that could be consumed
531                // - any number of bytes larger than this will either not be a
532                // multiple of the alignment, or will be larger than
533                // `bytes_len`.
534                let max_total_bytes =
535                    util::round_down_to_next_multiple_of_alignment(bytes_len, self.align);
536                // Calculate the maximum number of bytes that could be consumed
537                // by the trailing slice.
538                //
539                // TODO(#67): Once our MSRV is 1.65, use let-else:
540                // https://blog.rust-lang.org/2022/11/03/Rust-1.65.0.html#let-else-statements
541                let max_slice_and_padding_bytes = match max_total_bytes.checked_sub(offset) {
542                    Some(max) => max,
543                    // `bytes_len` too small even for 0 trailing slice elements.
544                    None => return Err(MetadataCastError::Size),
545                };
546
547                // Calculate the number of elements that fit in
548                // `max_slice_and_padding_bytes`; any remaining bytes will be
549                // considered padding.
550                //
551                // Guaranteed not to divide by zero: `elem_size` is non-zero.
552                #[allow(clippy::arithmetic_side_effects)]
553                let elems = max_slice_and_padding_bytes / elem_size.get();
554                // Guaranteed not to overflow on multiplication: `usize::MAX >=
555                // max_slice_and_padding_bytes >= (max_slice_and_padding_bytes /
556                // elem_size) * elem_size`.
557                //
558                // Guaranteed not to overflow on addition:
559                // - max_slice_and_padding_bytes == max_total_bytes - offset
560                // - elems * elem_size <= max_slice_and_padding_bytes == max_total_bytes - offset
561                // - elems * elem_size + offset <= max_total_bytes <= usize::MAX
562                #[allow(clippy::arithmetic_side_effects)]
563                let without_padding = offset + elems * elem_size.get();
564                // `self_bytes` is equal to the offset bytes plus the bytes
565                // consumed by the trailing slice plus any padding bytes
566                // required to satisfy the alignment. Note that we have computed
567                // the maximum number of trailing slice elements that could fit
568                // in `self_bytes`, so any padding is guaranteed to be less than
569                // the size of an extra element.
570                //
571                // Guaranteed not to overflow:
572                // - By previous comment: without_padding == elems * elem_size +
573                //   offset <= max_total_bytes
574                // - By construction, `max_total_bytes` is a multiple of
575                //   `self.align`.
576                // - At most, adding padding needed to round `without_padding`
577                //   up to the next multiple of the alignment will bring
578                //   `self_bytes` up to `max_total_bytes`.
579                #[allow(clippy::arithmetic_side_effects)]
580                let self_bytes =
581                    without_padding + util::padding_needed_for(without_padding, self.align);
582                (elems, self_bytes)
583            }
584        };
585
586        __const_debug_assert!(self_bytes <= bytes_len);
587
588        let split_at = match cast_type {
589            CastType::Prefix => self_bytes,
590            // Guaranteed not to underflow:
591            // - In the `Sized` branch, only returns `size` if `size <=
592            //   bytes_len`.
593            // - In the `SliceDst` branch, calculates `self_bytes <=
594            //   max_toatl_bytes`, which is upper-bounded by `bytes_len`.
595            #[allow(clippy::arithmetic_side_effects)]
596            CastType::Suffix => bytes_len - self_bytes,
597        };
598
599        Ok((elems, split_at))
600    }
601}
602
603// TODO(#67): For some reason, on our MSRV toolchain, this `allow` isn't
604// enforced despite having `#![allow(unknown_lints)]` at the crate root, but
605// putting it here works. Once our MSRV is high enough that this bug has been
606// fixed, remove this `allow`.
607#[allow(unknown_lints)]
608#[cfg(test)]
609mod tests {
610    use super::*;
611
612    /// Tests of when a sized `DstLayout` is extended with a sized field.
613    #[allow(clippy::decimal_literal_representation)]
614    #[test]
615    fn test_dst_layout_extend_sized_with_sized() {
616        // This macro constructs a layout corresponding to a `u8` and extends it
617        // with a zero-sized trailing field of given alignment `n`. The macro
618        // tests that the resulting layout has both size and alignment `min(n,
619        // P)` for all valid values of `repr(packed(P))`.
620        macro_rules! test_align_is_size {
621            ($n:expr) => {
622                let base = DstLayout::for_type::<u8>();
623                let trailing_field = DstLayout::for_type::<elain::Align<$n>>();
624
625                let packs =
626                    core::iter::once(None).chain((0..29).map(|p| NonZeroUsize::new(2usize.pow(p))));
627
628                for pack in packs {
629                    let composite = base.extend(trailing_field, pack);
630                    let max_align = pack.unwrap_or(DstLayout::CURRENT_MAX_ALIGN);
631                    let align = $n.min(max_align.get());
632                    assert_eq!(
633                        composite,
634                        DstLayout {
635                            align: NonZeroUsize::new(align).unwrap(),
636                            size_info: SizeInfo::Sized { size: align }
637                        }
638                    )
639                }
640            };
641        }
642
643        test_align_is_size!(1);
644        test_align_is_size!(2);
645        test_align_is_size!(4);
646        test_align_is_size!(8);
647        test_align_is_size!(16);
648        test_align_is_size!(32);
649        test_align_is_size!(64);
650        test_align_is_size!(128);
651        test_align_is_size!(256);
652        test_align_is_size!(512);
653        test_align_is_size!(1024);
654        test_align_is_size!(2048);
655        test_align_is_size!(4096);
656        test_align_is_size!(8192);
657        test_align_is_size!(16384);
658        test_align_is_size!(32768);
659        test_align_is_size!(65536);
660        test_align_is_size!(131072);
661        test_align_is_size!(262144);
662        test_align_is_size!(524288);
663        test_align_is_size!(1048576);
664        test_align_is_size!(2097152);
665        test_align_is_size!(4194304);
666        test_align_is_size!(8388608);
667        test_align_is_size!(16777216);
668        test_align_is_size!(33554432);
669        test_align_is_size!(67108864);
670        test_align_is_size!(33554432);
671        test_align_is_size!(134217728);
672        test_align_is_size!(268435456);
673    }
674
675    /// Tests of when a sized `DstLayout` is extended with a DST field.
676    #[test]
677    fn test_dst_layout_extend_sized_with_dst() {
678        // Test that for all combinations of real-world alignments and
679        // `repr_packed` values, that the extension of a sized `DstLayout`` with
680        // a DST field correctly computes the trailing offset in the composite
681        // layout.
682
683        let aligns = (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap());
684        let packs = core::iter::once(None).chain(aligns.clone().map(Some));
685
686        for align in aligns {
687            for pack in packs.clone() {
688                let base = DstLayout::for_type::<u8>();
689                let elem_size = 42;
690                let trailing_field_offset = 11;
691
692                let trailing_field = DstLayout {
693                    align,
694                    size_info: SizeInfo::SliceDst(TrailingSliceLayout { elem_size, offset: 11 }),
695                };
696
697                let composite = base.extend(trailing_field, pack);
698
699                let max_align = pack.unwrap_or(DstLayout::CURRENT_MAX_ALIGN).get();
700
701                let align = align.get().min(max_align);
702
703                assert_eq!(
704                    composite,
705                    DstLayout {
706                        align: NonZeroUsize::new(align).unwrap(),
707                        size_info: SizeInfo::SliceDst(TrailingSliceLayout {
708                            elem_size,
709                            offset: align + trailing_field_offset,
710                        }),
711                    }
712                )
713            }
714        }
715    }
716
717    /// Tests that calling `pad_to_align` on a sized `DstLayout` adds the
718    /// expected amount of trailing padding.
719    #[test]
720    fn test_dst_layout_pad_to_align_with_sized() {
721        // For all valid alignments `align`, construct a one-byte layout aligned
722        // to `align`, call `pad_to_align`, and assert that the size of the
723        // resulting layout is equal to `align`.
724        for align in (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()) {
725            let layout = DstLayout { align, size_info: SizeInfo::Sized { size: 1 } };
726
727            assert_eq!(
728                layout.pad_to_align(),
729                DstLayout { align, size_info: SizeInfo::Sized { size: align.get() } }
730            );
731        }
732
733        // Test explicitly-provided combinations of unpadded and padded
734        // counterparts.
735
736        macro_rules! test {
737            (unpadded { size: $unpadded_size:expr, align: $unpadded_align:expr }
738                    => padded { size: $padded_size:expr, align: $padded_align:expr }) => {
739                let unpadded = DstLayout {
740                    align: NonZeroUsize::new($unpadded_align).unwrap(),
741                    size_info: SizeInfo::Sized { size: $unpadded_size },
742                };
743                let padded = unpadded.pad_to_align();
744
745                assert_eq!(
746                    padded,
747                    DstLayout {
748                        align: NonZeroUsize::new($padded_align).unwrap(),
749                        size_info: SizeInfo::Sized { size: $padded_size },
750                    }
751                );
752            };
753        }
754
755        test!(unpadded { size: 0, align: 4 } => padded { size: 0, align: 4 });
756        test!(unpadded { size: 1, align: 4 } => padded { size: 4, align: 4 });
757        test!(unpadded { size: 2, align: 4 } => padded { size: 4, align: 4 });
758        test!(unpadded { size: 3, align: 4 } => padded { size: 4, align: 4 });
759        test!(unpadded { size: 4, align: 4 } => padded { size: 4, align: 4 });
760        test!(unpadded { size: 5, align: 4 } => padded { size: 8, align: 4 });
761        test!(unpadded { size: 6, align: 4 } => padded { size: 8, align: 4 });
762        test!(unpadded { size: 7, align: 4 } => padded { size: 8, align: 4 });
763        test!(unpadded { size: 8, align: 4 } => padded { size: 8, align: 4 });
764
765        let current_max_align = DstLayout::CURRENT_MAX_ALIGN.get();
766
767        test!(unpadded { size: 1, align: current_max_align }
768                => padded { size: current_max_align, align: current_max_align });
769
770        test!(unpadded { size: current_max_align + 1, align: current_max_align }
771                => padded { size: current_max_align * 2, align: current_max_align });
772    }
773
774    /// Tests that calling `pad_to_align` on a DST `DstLayout` is a no-op.
775    #[test]
776    fn test_dst_layout_pad_to_align_with_dst() {
777        for align in (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()) {
778            for offset in 0..10 {
779                for elem_size in 0..10 {
780                    let layout = DstLayout {
781                        align,
782                        size_info: SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }),
783                    };
784                    assert_eq!(layout.pad_to_align(), layout);
785                }
786            }
787        }
788    }
789
790    // This test takes a long time when running under Miri, so we skip it in
791    // that case. This is acceptable because this is a logic test that doesn't
792    // attempt to expose UB.
793    #[test]
794    #[cfg_attr(miri, ignore)]
795    fn test_validate_cast_and_convert_metadata() {
796        #[allow(non_local_definitions)]
797        impl From<usize> for SizeInfo {
798            fn from(size: usize) -> SizeInfo {
799                SizeInfo::Sized { size }
800            }
801        }
802
803        #[allow(non_local_definitions)]
804        impl From<(usize, usize)> for SizeInfo {
805            fn from((offset, elem_size): (usize, usize)) -> SizeInfo {
806                SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size })
807            }
808        }
809
810        fn layout<S: Into<SizeInfo>>(s: S, align: usize) -> DstLayout {
811            DstLayout { size_info: s.into(), align: NonZeroUsize::new(align).unwrap() }
812        }
813
814        /// This macro accepts arguments in the form of:
815        ///
816        ///           layout(_, _, _).validate(_, _, _), Ok(Some((_, _)))
817        ///                  |  |  |           |  |  |            |  |
818        ///    base_size ----+  |  |           |  |  |            |  |
819        ///    align -----------+  |           |  |  |            |  |
820        ///    trailing_size ------+           |  |  |            |  |
821        ///    addr ---------------------------+  |  |            |  |
822        ///    bytes_len -------------------------+  |            |  |
823        ///    cast_type ----------------------------+            |  |
824        ///    elems ---------------------------------------------+  |
825        ///    split_at ---------------------------------------------+
826        ///
827        /// `.validate` is shorthand for `.validate_cast_and_convert_metadata`
828        /// for brevity.
829        ///
830        /// Each argument can either be an iterator or a wildcard. Each
831        /// wildcarded variable is implicitly replaced by an iterator over a
832        /// representative sample of values for that variable. Each `test!`
833        /// invocation iterates over every combination of values provided by
834        /// each variable's iterator (ie, the cartesian product) and validates
835        /// that the results are expected.
836        ///
837        /// The final argument uses the same syntax, but it has a different
838        /// meaning:
839        /// - If it is `Ok(pat)`, then the pattern `pat` is supplied to
840        ///   a matching assert to validate the computed result for each
841        ///   combination of input values.
842        /// - If it is `Err(Some(msg) | None)`, then `test!` validates that the
843        ///   call to `validate_cast_and_convert_metadata` panics with the given
844        ///   panic message or, if the current Rust toolchain version is too
845        ///   early to support panicking in `const fn`s, panics with *some*
846        ///   message. In the latter case, the `const_panic!` macro is used,
847        ///   which emits code which causes a non-panicking error at const eval
848        ///   time, but which does panic when invoked at runtime. Thus, it is
849        ///   merely difficult to predict the *value* of this panic. We deem
850        ///   that testing against the real panic strings on stable and nightly
851        ///   toolchains is enough to ensure correctness.
852        ///
853        /// Note that the meta-variables that match these variables have the
854        /// `tt` type, and some valid expressions are not valid `tt`s (such as
855        /// `a..b`). In this case, wrap the expression in parentheses, and it
856        /// will become valid `tt`.
857        macro_rules! test {
858                ($(:$sizes:expr =>)?
859                    layout($size:tt, $align:tt)
860                    .validate($addr:tt, $bytes_len:tt, $cast_type:tt), $expect:pat $(,)?
861                ) => {
862                    itertools::iproduct!(
863                        test!(@generate_size $size),
864                        test!(@generate_align $align),
865                        test!(@generate_usize $addr),
866                        test!(@generate_usize $bytes_len),
867                        test!(@generate_cast_type $cast_type)
868                    ).for_each(|(size_info, align, addr, bytes_len, cast_type)| {
869                        // Temporarily disable the panic hook installed by the test
870                        // harness. If we don't do this, all panic messages will be
871                        // kept in an internal log. On its own, this isn't a
872                        // problem, but if a non-caught panic ever happens (ie, in
873                        // code later in this test not in this macro), all of the
874                        // previously-buffered messages will be dumped, hiding the
875                        // real culprit.
876                        let previous_hook = std::panic::take_hook();
877                        // I don't understand why, but this seems to be required in
878                        // addition to the previous line.
879                        std::panic::set_hook(Box::new(|_| {}));
880                        let actual = std::panic::catch_unwind(|| {
881                            layout(size_info, align).validate_cast_and_convert_metadata(addr, bytes_len, cast_type)
882                        }).map_err(|d| {
883                            let msg = d.downcast::<&'static str>().ok().map(|s| *s.as_ref());
884                            assert!(msg.is_some() || cfg!(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)), "non-string panic messages are not permitted when `--cfg zerocopy_panic_in_const_and_vec_try_reserve` is set");
885                            msg
886                        });
887                        std::panic::set_hook(previous_hook);
888
889                        assert!(
890                            matches!(actual, $expect),
891                            "layout({:?}, {}).validate_cast_and_convert_metadata({}, {}, {:?})" ,size_info, align, addr, bytes_len, cast_type
892                        );
893                    });
894                };
895                (@generate_usize _) => { 0..8 };
896                // Generate sizes for both Sized and !Sized types.
897                (@generate_size _) => {
898                    test!(@generate_size (_)).chain(test!(@generate_size (_, _)))
899                };
900                // Generate sizes for both Sized and !Sized types by chaining
901                // specified iterators for each.
902                (@generate_size ($sized_sizes:tt | $unsized_sizes:tt)) => {
903                    test!(@generate_size ($sized_sizes)).chain(test!(@generate_size $unsized_sizes))
904                };
905                // Generate sizes for Sized types.
906                (@generate_size (_)) => { test!(@generate_size (0..8)) };
907                (@generate_size ($sizes:expr)) => { $sizes.into_iter().map(Into::<SizeInfo>::into) };
908                // Generate sizes for !Sized types.
909                (@generate_size ($min_sizes:tt, $elem_sizes:tt)) => {
910                    itertools::iproduct!(
911                        test!(@generate_min_size $min_sizes),
912                        test!(@generate_elem_size $elem_sizes)
913                    ).map(Into::<SizeInfo>::into)
914                };
915                (@generate_fixed_size _) => { (0..8).into_iter().map(Into::<SizeInfo>::into) };
916                (@generate_min_size _) => { 0..8 };
917                (@generate_elem_size _) => { 1..8 };
918                (@generate_align _) => { [1, 2, 4, 8, 16] };
919                (@generate_opt_usize _) => { [None].into_iter().chain((0..8).map(Some).into_iter()) };
920                (@generate_cast_type _) => { [CastType::Prefix, CastType::Suffix] };
921                (@generate_cast_type $variant:ident) => { [CastType::$variant] };
922                // Some expressions need to be wrapped in parentheses in order to be
923                // valid `tt`s (required by the top match pattern). See the comment
924                // below for more details. This arm removes these parentheses to
925                // avoid generating an `unused_parens` warning.
926                (@$_:ident ($vals:expr)) => { $vals };
927                (@$_:ident $vals:expr) => { $vals };
928            }
929
930        const EVENS: [usize; 8] = [0, 2, 4, 6, 8, 10, 12, 14];
931        const ODDS: [usize; 8] = [1, 3, 5, 7, 9, 11, 13, 15];
932
933        // base_size is too big for the memory region.
934        test!(
935            layout(((1..8) | ((1..8), (1..8))), _).validate([0], [0], _),
936            Ok(Err(MetadataCastError::Size))
937        );
938        test!(
939            layout(((2..8) | ((2..8), (2..8))), _).validate([0], [1], Prefix),
940            Ok(Err(MetadataCastError::Size))
941        );
942        test!(
943            layout(((2..8) | ((2..8), (2..8))), _).validate([0x1000_0000 - 1], [1], Suffix),
944            Ok(Err(MetadataCastError::Size))
945        );
946
947        // addr is unaligned for prefix cast
948        test!(layout(_, [2]).validate(ODDS, _, Prefix), Ok(Err(MetadataCastError::Alignment)));
949        test!(layout(_, [2]).validate(ODDS, _, Prefix), Ok(Err(MetadataCastError::Alignment)));
950
951        // addr is aligned, but end of buffer is unaligned for suffix cast
952        test!(layout(_, [2]).validate(EVENS, ODDS, Suffix), Ok(Err(MetadataCastError::Alignment)));
953        test!(layout(_, [2]).validate(EVENS, ODDS, Suffix), Ok(Err(MetadataCastError::Alignment)));
954
955        // Unfortunately, these constants cannot easily be used in the
956        // implementation of `validate_cast_and_convert_metadata`, since
957        // `panic!` consumes a string literal, not an expression.
958        //
959        // It's important that these messages be in a separate module. If they
960        // were at the function's top level, we'd pass them to `test!` as, e.g.,
961        // `Err(TRAILING)`, which would run into a subtle Rust footgun - the
962        // `TRAILING` identifier would be treated as a pattern to match rather
963        // than a value to check for equality.
964        mod msgs {
965            pub(super) const TRAILING: &str =
966                "attempted to cast to slice type with zero-sized element";
967            pub(super) const OVERFLOW: &str = "`addr` + `bytes_len` > usize::MAX";
968        }
969
970        // casts with ZST trailing element types are unsupported
971        test!(layout((_, [0]), _).validate(_, _, _), Err(Some(msgs::TRAILING) | None),);
972
973        // addr + bytes_len must not overflow usize
974        test!(layout(_, _).validate([usize::MAX], (1..100), _), Err(Some(msgs::OVERFLOW) | None));
975        test!(layout(_, _).validate((1..100), [usize::MAX], _), Err(Some(msgs::OVERFLOW) | None));
976        test!(
977            layout(_, _).validate(
978                [usize::MAX / 2 + 1, usize::MAX],
979                [usize::MAX / 2 + 1, usize::MAX],
980                _
981            ),
982            Err(Some(msgs::OVERFLOW) | None)
983        );
984
985        // Validates that `validate_cast_and_convert_metadata` satisfies its own
986        // documented safety postconditions, and also a few other properties
987        // that aren't documented but we want to guarantee anyway.
988        fn validate_behavior(
989            (layout, addr, bytes_len, cast_type): (DstLayout, usize, usize, CastType),
990        ) {
991            if let Ok((elems, split_at)) =
992                layout.validate_cast_and_convert_metadata(addr, bytes_len, cast_type)
993            {
994                let (size_info, align) = (layout.size_info, layout.align);
995                let debug_str = format!(
996                    "layout({:?}, {}).validate_cast_and_convert_metadata({}, {}, {:?}) => ({}, {})",
997                    size_info, align, addr, bytes_len, cast_type, elems, split_at
998                );
999
1000                // If this is a sized type (no trailing slice), then `elems` is
1001                // meaningless, but in practice we set it to 0. Callers are not
1002                // allowed to rely on this, but a lot of math is nicer if
1003                // they're able to, and some callers might accidentally do that.
1004                let sized = matches!(layout.size_info, SizeInfo::Sized { .. });
1005                assert!(!(sized && elems != 0), "{}", debug_str);
1006
1007                let resulting_size = match layout.size_info {
1008                    SizeInfo::Sized { size } => size,
1009                    SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) => {
1010                        let padded_size = |elems| {
1011                            let without_padding = offset + elems * elem_size;
1012                            without_padding + util::padding_needed_for(without_padding, align)
1013                        };
1014
1015                        let resulting_size = padded_size(elems);
1016                        // Test that `validate_cast_and_convert_metadata`
1017                        // computed the largest possible value that fits in the
1018                        // given range.
1019                        assert!(padded_size(elems + 1) > bytes_len, "{}", debug_str);
1020                        resulting_size
1021                    }
1022                };
1023
1024                // Test safety postconditions guaranteed by
1025                // `validate_cast_and_convert_metadata`.
1026                assert!(resulting_size <= bytes_len, "{}", debug_str);
1027                match cast_type {
1028                    CastType::Prefix => {
1029                        assert_eq!(addr % align, 0, "{}", debug_str);
1030                        assert_eq!(resulting_size, split_at, "{}", debug_str);
1031                    }
1032                    CastType::Suffix => {
1033                        assert_eq!(split_at, bytes_len - resulting_size, "{}", debug_str);
1034                        assert_eq!((addr + split_at) % align, 0, "{}", debug_str);
1035                    }
1036                }
1037            } else {
1038                let min_size = match layout.size_info {
1039                    SizeInfo::Sized { size } => size,
1040                    SizeInfo::SliceDst(TrailingSliceLayout { offset, .. }) => {
1041                        offset + util::padding_needed_for(offset, layout.align)
1042                    }
1043                };
1044
1045                // If a cast is invalid, it is either because...
1046                // 1. there are insufficent bytes at the given region for type:
1047                let insufficient_bytes = bytes_len < min_size;
1048                // 2. performing the cast would misalign type:
1049                let base = match cast_type {
1050                    CastType::Prefix => 0,
1051                    CastType::Suffix => bytes_len,
1052                };
1053                let misaligned = (base + addr) % layout.align != 0;
1054
1055                assert!(insufficient_bytes || misaligned);
1056            }
1057        }
1058
1059        let sizes = 0..8;
1060        let elem_sizes = 1..8;
1061        let size_infos = sizes
1062            .clone()
1063            .map(Into::<SizeInfo>::into)
1064            .chain(itertools::iproduct!(sizes, elem_sizes).map(Into::<SizeInfo>::into));
1065        let layouts = itertools::iproduct!(size_infos, [1, 2, 4, 8, 16, 32])
1066                .filter(|(size_info, align)| !matches!(size_info, SizeInfo::Sized { size } if size % align != 0))
1067                .map(|(size_info, align)| layout(size_info, align));
1068        itertools::iproduct!(layouts, 0..8, 0..8, [CastType::Prefix, CastType::Suffix])
1069            .for_each(validate_behavior);
1070    }
1071
1072    #[test]
1073    #[cfg(__ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS)]
1074    fn test_validate_rust_layout() {
1075        use crate::util::testutil::*;
1076        use core::{
1077            convert::TryInto as _,
1078            ptr::{self, NonNull},
1079        };
1080
1081        // This test synthesizes pointers with various metadata and uses Rust's
1082        // built-in APIs to confirm that Rust makes decisions about type layout
1083        // which are consistent with what we believe is guaranteed by the
1084        // language. If this test fails, it doesn't just mean our code is wrong
1085        // - it means we're misunderstanding the language's guarantees.
1086
1087        #[derive(Debug)]
1088        struct MacroArgs {
1089            offset: usize,
1090            align: NonZeroUsize,
1091            elem_size: Option<usize>,
1092        }
1093
1094        /// # Safety
1095        ///
1096        /// `test` promises to only call `addr_of_slice_field` on a `NonNull<T>`
1097        /// which points to a valid `T`.
1098        ///
1099        /// `with_elems` must produce a pointer which points to a valid `T`.
1100        fn test<T: ?Sized, W: Fn(usize) -> NonNull<T>>(
1101            args: MacroArgs,
1102            with_elems: W,
1103            addr_of_slice_field: Option<fn(NonNull<T>) -> NonNull<u8>>,
1104        ) {
1105            let dst = args.elem_size.is_some();
1106            let layout = {
1107                let size_info = match args.elem_size {
1108                    Some(elem_size) => {
1109                        SizeInfo::SliceDst(TrailingSliceLayout { offset: args.offset, elem_size })
1110                    }
1111                    None => SizeInfo::Sized {
1112                        // Rust only supports types whose sizes are a multiple
1113                        // of their alignment. If the macro created a type like
1114                        // this:
1115                        //
1116                        //   #[repr(C, align(2))]
1117                        //   struct Foo([u8; 1]);
1118                        //
1119                        // ...then Rust will automatically round the type's size
1120                        // up to 2.
1121                        size: args.offset + util::padding_needed_for(args.offset, args.align),
1122                    },
1123                };
1124                DstLayout { size_info, align: args.align }
1125            };
1126
1127            for elems in 0..128 {
1128                let ptr = with_elems(elems);
1129
1130                if let Some(addr_of_slice_field) = addr_of_slice_field {
1131                    let slc_field_ptr = addr_of_slice_field(ptr).as_ptr();
1132                    // SAFETY: Both `slc_field_ptr` and `ptr` are pointers to
1133                    // the same valid Rust object.
1134                    #[allow(clippy::incompatible_msrv)]
1135                    // Work around https://github.com/rust-lang/rust-clippy/issues/12280
1136                    let offset: usize =
1137                        unsafe { slc_field_ptr.byte_offset_from(ptr.as_ptr()).try_into().unwrap() };
1138                    assert_eq!(offset, args.offset);
1139                }
1140
1141                // SAFETY: `ptr` points to a valid `T`.
1142                let (size, align) = unsafe {
1143                    (mem::size_of_val_raw(ptr.as_ptr()), mem::align_of_val_raw(ptr.as_ptr()))
1144                };
1145
1146                // Avoid expensive allocation when running under Miri.
1147                let assert_msg = if !cfg!(miri) {
1148                    format!("\n{:?}\nsize:{}, align:{}", args, size, align)
1149                } else {
1150                    String::new()
1151                };
1152
1153                let without_padding =
1154                    args.offset + args.elem_size.map(|elem_size| elems * elem_size).unwrap_or(0);
1155                assert!(size >= without_padding, "{}", assert_msg);
1156                assert_eq!(align, args.align.get(), "{}", assert_msg);
1157
1158                // This encodes the most important part of the test: our
1159                // understanding of how Rust determines the layout of repr(C)
1160                // types. Sized repr(C) types are trivial, but DST types have
1161                // some subtlety. Note that:
1162                // - For sized types, `without_padding` is just the size of the
1163                //   type that we constructed for `Foo`. Since we may have
1164                //   requested a larger alignment, `Foo` may actually be larger
1165                //   than this, hence `padding_needed_for`.
1166                // - For unsized types, `without_padding` is dynamically
1167                //   computed from the offset, the element size, and element
1168                //   count. We expect that the size of the object should be
1169                //   `offset + elem_size * elems` rounded up to the next
1170                //   alignment.
1171                let expected_size =
1172                    without_padding + util::padding_needed_for(without_padding, args.align);
1173                assert_eq!(expected_size, size, "{}", assert_msg);
1174
1175                // For zero-sized element types,
1176                // `validate_cast_and_convert_metadata` just panics, so we skip
1177                // testing those types.
1178                if args.elem_size.map(|elem_size| elem_size > 0).unwrap_or(true) {
1179                    let addr = ptr.addr().get();
1180                    let (got_elems, got_split_at) = layout
1181                        .validate_cast_and_convert_metadata(addr, size, CastType::Prefix)
1182                        .unwrap();
1183                    // Avoid expensive allocation when running under Miri.
1184                    let assert_msg = if !cfg!(miri) {
1185                        format!(
1186                            "{}\nvalidate_cast_and_convert_metadata({}, {})",
1187                            assert_msg, addr, size,
1188                        )
1189                    } else {
1190                        String::new()
1191                    };
1192                    assert_eq!(got_split_at, size, "{}", assert_msg);
1193                    if dst {
1194                        assert!(got_elems >= elems, "{}", assert_msg);
1195                        if got_elems != elems {
1196                            // If `validate_cast_and_convert_metadata`
1197                            // returned more elements than `elems`, that
1198                            // means that `elems` is not the maximum number
1199                            // of elements that can fit in `size` - in other
1200                            // words, there is enough padding at the end of
1201                            // the value to fit at least one more element.
1202                            // If we use this metadata to synthesize a
1203                            // pointer, despite having a different element
1204                            // count, we still expect it to have the same
1205                            // size.
1206                            let got_ptr = with_elems(got_elems);
1207                            // SAFETY: `got_ptr` is a pointer to a valid `T`.
1208                            let size_of_got_ptr = unsafe { mem::size_of_val_raw(got_ptr.as_ptr()) };
1209                            assert_eq!(size_of_got_ptr, size, "{}", assert_msg);
1210                        }
1211                    } else {
1212                        // For sized casts, the returned element value is
1213                        // technically meaningless, and we don't guarantee any
1214                        // particular value. In practice, it's always zero.
1215                        assert_eq!(got_elems, 0, "{}", assert_msg)
1216                    }
1217                }
1218            }
1219        }
1220
1221        macro_rules! validate_against_rust {
1222                ($offset:literal, $align:literal $(, $elem_size:literal)?) => {{
1223                    #[repr(C, align($align))]
1224                    struct Foo([u8; $offset]$(, [[u8; $elem_size]])?);
1225
1226                    let args = MacroArgs {
1227                        offset: $offset,
1228                        align: $align.try_into().unwrap(),
1229                        elem_size: {
1230                            #[allow(unused)]
1231                            let ret = None::<usize>;
1232                            $(let ret = Some($elem_size);)?
1233                            ret
1234                        }
1235                    };
1236
1237                    #[repr(C, align($align))]
1238                    struct FooAlign;
1239                    // Create an aligned buffer to use in order to synthesize
1240                    // pointers to `Foo`. We don't ever load values from these
1241                    // pointers - we just do arithmetic on them - so having a "real"
1242                    // block of memory as opposed to a validly-aligned-but-dangling
1243                    // pointer is only necessary to make Miri happy since we run it
1244                    // with "strict provenance" checking enabled.
1245                    let aligned_buf = Align::<_, FooAlign>::new([0u8; 1024]);
1246                    let with_elems = |elems| {
1247                        let slc = NonNull::slice_from_raw_parts(NonNull::from(&aligned_buf.t), elems);
1248                        #[allow(clippy::as_conversions)]
1249                        NonNull::new(slc.as_ptr() as *mut Foo).unwrap()
1250                    };
1251                    let addr_of_slice_field = {
1252                        #[allow(unused)]
1253                        let f = None::<fn(NonNull<Foo>) -> NonNull<u8>>;
1254                        $(
1255                            // SAFETY: `test` promises to only call `f` with a `ptr`
1256                            // to a valid `Foo`.
1257                            let f: Option<fn(NonNull<Foo>) -> NonNull<u8>> = Some(|ptr: NonNull<Foo>| unsafe {
1258                                NonNull::new(ptr::addr_of_mut!((*ptr.as_ptr()).1)).unwrap().cast::<u8>()
1259                            });
1260                            let _ = $elem_size;
1261                        )?
1262                        f
1263                    };
1264
1265                    test::<Foo, _>(args, with_elems, addr_of_slice_field);
1266                }};
1267            }
1268
1269        // Every permutation of:
1270        // - offset in [0, 4]
1271        // - align in [1, 16]
1272        // - elem_size in [0, 4] (plus no elem_size)
1273        validate_against_rust!(0, 1);
1274        validate_against_rust!(0, 1, 0);
1275        validate_against_rust!(0, 1, 1);
1276        validate_against_rust!(0, 1, 2);
1277        validate_against_rust!(0, 1, 3);
1278        validate_against_rust!(0, 1, 4);
1279        validate_against_rust!(0, 2);
1280        validate_against_rust!(0, 2, 0);
1281        validate_against_rust!(0, 2, 1);
1282        validate_against_rust!(0, 2, 2);
1283        validate_against_rust!(0, 2, 3);
1284        validate_against_rust!(0, 2, 4);
1285        validate_against_rust!(0, 4);
1286        validate_against_rust!(0, 4, 0);
1287        validate_against_rust!(0, 4, 1);
1288        validate_against_rust!(0, 4, 2);
1289        validate_against_rust!(0, 4, 3);
1290        validate_against_rust!(0, 4, 4);
1291        validate_against_rust!(0, 8);
1292        validate_against_rust!(0, 8, 0);
1293        validate_against_rust!(0, 8, 1);
1294        validate_against_rust!(0, 8, 2);
1295        validate_against_rust!(0, 8, 3);
1296        validate_against_rust!(0, 8, 4);
1297        validate_against_rust!(0, 16);
1298        validate_against_rust!(0, 16, 0);
1299        validate_against_rust!(0, 16, 1);
1300        validate_against_rust!(0, 16, 2);
1301        validate_against_rust!(0, 16, 3);
1302        validate_against_rust!(0, 16, 4);
1303        validate_against_rust!(1, 1);
1304        validate_against_rust!(1, 1, 0);
1305        validate_against_rust!(1, 1, 1);
1306        validate_against_rust!(1, 1, 2);
1307        validate_against_rust!(1, 1, 3);
1308        validate_against_rust!(1, 1, 4);
1309        validate_against_rust!(1, 2);
1310        validate_against_rust!(1, 2, 0);
1311        validate_against_rust!(1, 2, 1);
1312        validate_against_rust!(1, 2, 2);
1313        validate_against_rust!(1, 2, 3);
1314        validate_against_rust!(1, 2, 4);
1315        validate_against_rust!(1, 4);
1316        validate_against_rust!(1, 4, 0);
1317        validate_against_rust!(1, 4, 1);
1318        validate_against_rust!(1, 4, 2);
1319        validate_against_rust!(1, 4, 3);
1320        validate_against_rust!(1, 4, 4);
1321        validate_against_rust!(1, 8);
1322        validate_against_rust!(1, 8, 0);
1323        validate_against_rust!(1, 8, 1);
1324        validate_against_rust!(1, 8, 2);
1325        validate_against_rust!(1, 8, 3);
1326        validate_against_rust!(1, 8, 4);
1327        validate_against_rust!(1, 16);
1328        validate_against_rust!(1, 16, 0);
1329        validate_against_rust!(1, 16, 1);
1330        validate_against_rust!(1, 16, 2);
1331        validate_against_rust!(1, 16, 3);
1332        validate_against_rust!(1, 16, 4);
1333        validate_against_rust!(2, 1);
1334        validate_against_rust!(2, 1, 0);
1335        validate_against_rust!(2, 1, 1);
1336        validate_against_rust!(2, 1, 2);
1337        validate_against_rust!(2, 1, 3);
1338        validate_against_rust!(2, 1, 4);
1339        validate_against_rust!(2, 2);
1340        validate_against_rust!(2, 2, 0);
1341        validate_against_rust!(2, 2, 1);
1342        validate_against_rust!(2, 2, 2);
1343        validate_against_rust!(2, 2, 3);
1344        validate_against_rust!(2, 2, 4);
1345        validate_against_rust!(2, 4);
1346        validate_against_rust!(2, 4, 0);
1347        validate_against_rust!(2, 4, 1);
1348        validate_against_rust!(2, 4, 2);
1349        validate_against_rust!(2, 4, 3);
1350        validate_against_rust!(2, 4, 4);
1351        validate_against_rust!(2, 8);
1352        validate_against_rust!(2, 8, 0);
1353        validate_against_rust!(2, 8, 1);
1354        validate_against_rust!(2, 8, 2);
1355        validate_against_rust!(2, 8, 3);
1356        validate_against_rust!(2, 8, 4);
1357        validate_against_rust!(2, 16);
1358        validate_against_rust!(2, 16, 0);
1359        validate_against_rust!(2, 16, 1);
1360        validate_against_rust!(2, 16, 2);
1361        validate_against_rust!(2, 16, 3);
1362        validate_against_rust!(2, 16, 4);
1363        validate_against_rust!(3, 1);
1364        validate_against_rust!(3, 1, 0);
1365        validate_against_rust!(3, 1, 1);
1366        validate_against_rust!(3, 1, 2);
1367        validate_against_rust!(3, 1, 3);
1368        validate_against_rust!(3, 1, 4);
1369        validate_against_rust!(3, 2);
1370        validate_against_rust!(3, 2, 0);
1371        validate_against_rust!(3, 2, 1);
1372        validate_against_rust!(3, 2, 2);
1373        validate_against_rust!(3, 2, 3);
1374        validate_against_rust!(3, 2, 4);
1375        validate_against_rust!(3, 4);
1376        validate_against_rust!(3, 4, 0);
1377        validate_against_rust!(3, 4, 1);
1378        validate_against_rust!(3, 4, 2);
1379        validate_against_rust!(3, 4, 3);
1380        validate_against_rust!(3, 4, 4);
1381        validate_against_rust!(3, 8);
1382        validate_against_rust!(3, 8, 0);
1383        validate_against_rust!(3, 8, 1);
1384        validate_against_rust!(3, 8, 2);
1385        validate_against_rust!(3, 8, 3);
1386        validate_against_rust!(3, 8, 4);
1387        validate_against_rust!(3, 16);
1388        validate_against_rust!(3, 16, 0);
1389        validate_against_rust!(3, 16, 1);
1390        validate_against_rust!(3, 16, 2);
1391        validate_against_rust!(3, 16, 3);
1392        validate_against_rust!(3, 16, 4);
1393        validate_against_rust!(4, 1);
1394        validate_against_rust!(4, 1, 0);
1395        validate_against_rust!(4, 1, 1);
1396        validate_against_rust!(4, 1, 2);
1397        validate_against_rust!(4, 1, 3);
1398        validate_against_rust!(4, 1, 4);
1399        validate_against_rust!(4, 2);
1400        validate_against_rust!(4, 2, 0);
1401        validate_against_rust!(4, 2, 1);
1402        validate_against_rust!(4, 2, 2);
1403        validate_against_rust!(4, 2, 3);
1404        validate_against_rust!(4, 2, 4);
1405        validate_against_rust!(4, 4);
1406        validate_against_rust!(4, 4, 0);
1407        validate_against_rust!(4, 4, 1);
1408        validate_against_rust!(4, 4, 2);
1409        validate_against_rust!(4, 4, 3);
1410        validate_against_rust!(4, 4, 4);
1411        validate_against_rust!(4, 8);
1412        validate_against_rust!(4, 8, 0);
1413        validate_against_rust!(4, 8, 1);
1414        validate_against_rust!(4, 8, 2);
1415        validate_against_rust!(4, 8, 3);
1416        validate_against_rust!(4, 8, 4);
1417        validate_against_rust!(4, 16);
1418        validate_against_rust!(4, 16, 0);
1419        validate_against_rust!(4, 16, 1);
1420        validate_against_rust!(4, 16, 2);
1421        validate_against_rust!(4, 16, 3);
1422        validate_against_rust!(4, 16, 4);
1423    }
1424}