zerocopy/pointer/ptr.rs
1// Copyright 2023 The Fuchsia Authors
2//
3// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6// This file may not be copied, modified, or distributed except according to
7// those terms.
8
9use core::{
10 fmt::{Debug, Formatter},
11 marker::PhantomData,
12};
13
14use crate::{
15 pointer::{
16 inner::PtrInner,
17 invariant::*,
18 transmute::{MutationCompatible, SizeEq, TransmuteFromPtr},
19 },
20 AlignmentError, CastError, CastType, KnownLayout, SizeError, TryFromBytes, ValidityError,
21};
22
23/// Module used to gate access to [`Ptr`]'s fields.
24mod def {
25 #[cfg(doc)]
26 use super::super::invariant;
27 use super::*;
28
29 /// A raw pointer with more restrictions.
30 ///
31 /// `Ptr<T>` is similar to [`NonNull<T>`], but it is more restrictive in the
32 /// following ways (note that these requirements only hold of non-zero-sized
33 /// referents):
34 /// - It must derive from a valid allocation.
35 /// - It must reference a byte range which is contained inside the
36 /// allocation from which it derives.
37 /// - As a consequence, the byte range it references must have a size
38 /// which does not overflow `isize`.
39 ///
40 /// Depending on how `Ptr` is parameterized, it may have additional
41 /// invariants:
42 /// - `ptr` conforms to the aliasing invariant of
43 /// [`I::Aliasing`](invariant::Aliasing).
44 /// - `ptr` conforms to the alignment invariant of
45 /// [`I::Alignment`](invariant::Alignment).
46 /// - `ptr` conforms to the validity invariant of
47 /// [`I::Validity`](invariant::Validity).
48 ///
49 /// `Ptr<'a, T>` is [covariant] in `'a` and invariant in `T`.
50 ///
51 /// [`NonNull<T>`]: core::ptr::NonNull
52 /// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
53 pub struct Ptr<'a, T, I>
54 where
55 T: ?Sized,
56 I: Invariants,
57 {
58 /// # Invariants
59 ///
60 /// 0. `ptr` conforms to the aliasing invariant of
61 /// [`I::Aliasing`](invariant::Aliasing).
62 /// 1. `ptr` conforms to the alignment invariant of
63 /// [`I::Alignment`](invariant::Alignment).
64 /// 2. `ptr` conforms to the validity invariant of
65 /// [`I::Validity`](invariant::Validity).
66 // SAFETY: `PtrInner<'a, T>` is covariant in `'a` and invariant in `T`.
67 ptr: PtrInner<'a, T>,
68 _invariants: PhantomData<I>,
69 }
70
71 impl<'a, T, I> Ptr<'a, T, I>
72 where
73 T: 'a + ?Sized,
74 I: Invariants,
75 {
76 /// Constructs a new `Ptr` from a [`PtrInner`].
77 ///
78 /// # Safety
79 ///
80 /// The caller promises that:
81 ///
82 /// 0. `ptr` conforms to the aliasing invariant of
83 /// [`I::Aliasing`](invariant::Aliasing).
84 /// 1. `ptr` conforms to the alignment invariant of
85 /// [`I::Alignment`](invariant::Alignment).
86 /// 2. `ptr` conforms to the validity invariant of
87 /// [`I::Validity`](invariant::Validity).
88 pub(crate) unsafe fn from_inner(ptr: PtrInner<'a, T>) -> Ptr<'a, T, I> {
89 // SAFETY: The caller has promised to satisfy all safety invariants
90 // of `Ptr`.
91 Self { ptr, _invariants: PhantomData }
92 }
93
94 /// Converts this `Ptr<T>` to a [`PtrInner<T>`].
95 ///
96 /// Note that this method does not consume `self`. The caller should
97 /// watch out for `unsafe` code which uses the returned value in a way
98 /// that violates the safety invariants of `self`.
99 pub(crate) fn as_inner(&self) -> PtrInner<'a, T> {
100 self.ptr
101 }
102 }
103}
104
105#[allow(unreachable_pub)] // This is a false positive on our MSRV toolchain.
106pub use def::Ptr;
107
108/// External trait implementations on [`Ptr`].
109mod _external {
110 use super::*;
111
112 /// SAFETY: Shared pointers are safely `Copy`. `Ptr`'s other invariants
113 /// (besides aliasing) are unaffected by the number of references that exist
114 /// to `Ptr`'s referent. The notable cases are:
115 /// - Alignment is a property of the referent type (`T`) and the address,
116 /// both of which are unchanged
117 /// - Let `S(T, V)` be the set of bit values permitted to appear in the
118 /// referent of a `Ptr<T, I: Invariants<Validity = V>>`. Since this copy
119 /// does not change `I::Validity` or `T`, `S(T, I::Validity)` is also
120 /// unchanged.
121 ///
122 /// We are required to guarantee that the referents of the original `Ptr`
123 /// and of the copy (which, of course, are actually the same since they
124 /// live in the same byte address range) both remain in the set `S(T,
125 /// I::Validity)`. Since this invariant holds on the original `Ptr`, it
126 /// cannot be violated by the original `Ptr`, and thus the original `Ptr`
127 /// cannot be used to violate this invariant on the copy. The inverse
128 /// holds as well.
129 impl<'a, T, I> Copy for Ptr<'a, T, I>
130 where
131 T: 'a + ?Sized,
132 I: Invariants<Aliasing = Shared>,
133 {
134 }
135
136 /// SAFETY: See the safety comment on `Copy`.
137 impl<'a, T, I> Clone for Ptr<'a, T, I>
138 where
139 T: 'a + ?Sized,
140 I: Invariants<Aliasing = Shared>,
141 {
142 #[inline]
143 fn clone(&self) -> Self {
144 *self
145 }
146 }
147
148 impl<'a, T, I> Debug for Ptr<'a, T, I>
149 where
150 T: 'a + ?Sized,
151 I: Invariants,
152 {
153 #[inline]
154 fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
155 self.as_inner().as_non_null().fmt(f)
156 }
157 }
158}
159
160/// Methods for converting to and from `Ptr` and Rust's safe reference types.
161mod _conversions {
162 use super::*;
163
164 /// `&'a T` → `Ptr<'a, T>`
165 impl<'a, T> Ptr<'a, T, (Shared, Aligned, Valid)>
166 where
167 T: 'a + ?Sized,
168 {
169 /// Constructs a `Ptr` from a shared reference.
170 #[doc(hidden)]
171 #[inline]
172 pub fn from_ref(ptr: &'a T) -> Self {
173 let inner = PtrInner::from_ref(ptr);
174 // SAFETY:
175 // 0. `ptr`, by invariant on `&'a T`, conforms to the aliasing
176 // invariant of `Shared`.
177 // 1. `ptr`, by invariant on `&'a T`, conforms to the alignment
178 // invariant of `Aligned`.
179 // 2. `ptr`'s referent, by invariant on `&'a T`, is a bit-valid `T`.
180 // This satisfies the requirement that a `Ptr<T, (_, _, Valid)>`
181 // point to a bit-valid `T`. Even if `T` permits interior
182 // mutation, this invariant guarantees that the returned `Ptr`
183 // can only ever be used to modify the referent to store
184 // bit-valid `T`s, which ensures that the returned `Ptr` cannot
185 // be used to violate the soundness of the original `ptr: &'a T`
186 // or of any other references that may exist to the same
187 // referent.
188 unsafe { Self::from_inner(inner) }
189 }
190 }
191
192 /// `&'a mut T` → `Ptr<'a, T>`
193 impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)>
194 where
195 T: 'a + ?Sized,
196 {
197 /// Constructs a `Ptr` from an exclusive reference.
198 #[inline]
199 pub(crate) fn from_mut(ptr: &'a mut T) -> Self {
200 let inner = PtrInner::from_mut(ptr);
201 // SAFETY:
202 // 0. `ptr`, by invariant on `&'a mut T`, conforms to the aliasing
203 // invariant of `Exclusive`.
204 // 1. `ptr`, by invariant on `&'a mut T`, conforms to the alignment
205 // invariant of `Aligned`.
206 // 2. `ptr`'s referent, by invariant on `&'a mut T`, is a bit-valid
207 // `T`. This satisfies the requirement that a `Ptr<T, (_, _,
208 // Valid)>` point to a bit-valid `T`. This invariant guarantees
209 // that the returned `Ptr` can only ever be used to modify the
210 // referent to store bit-valid `T`s, which ensures that the
211 // returned `Ptr` cannot be used to violate the soundness of the
212 // original `ptr: &'a mut T`.
213 unsafe { Self::from_inner(inner) }
214 }
215 }
216
217 /// `Ptr<'a, T>` → `&'a T`
218 impl<'a, T, I> Ptr<'a, T, I>
219 where
220 T: 'a + ?Sized,
221 I: Invariants<Alignment = Aligned, Validity = Valid>,
222 I::Aliasing: Reference,
223 {
224 /// Converts `self` to a shared reference.
225 // This consumes `self`, not `&self`, because `self` is, logically, a
226 // pointer. For `I::Aliasing = invariant::Shared`, `Self: Copy`, and so
227 // this doesn't prevent the caller from still using the pointer after
228 // calling `as_ref`.
229 #[allow(clippy::wrong_self_convention)]
230 pub(crate) fn as_ref(self) -> &'a T {
231 let raw = self.as_inner().as_non_null();
232 // SAFETY: This invocation of `NonNull::as_ref` satisfies its
233 // documented safety preconditions:
234 //
235 // 1. The pointer is properly aligned. This is ensured by-contract
236 // on `Ptr`, because the `I::Alignment` is `Aligned`.
237 //
238 // 2. If the pointer's referent is not zero-sized, then the pointer
239 // must be “dereferenceable” in the sense defined in the module
240 // documentation; i.e.:
241 //
242 // > The memory range of the given size starting at the pointer
243 // > must all be within the bounds of a single allocated object.
244 // > [2]
245 //
246 // This is ensured by contract on all `PtrInner`s.
247 //
248 // 3. The pointer must point to a validly-initialized instance of
249 // `T`. This is ensured by-contract on `Ptr`, because the
250 // `I::Validity` is `Valid`.
251 //
252 // 4. You must enforce Rust’s aliasing rules. This is ensured by
253 // contract on `Ptr`, because `I::Aliasing: Reference`. Either it
254 // is `Shared` or `Exclusive`. If it is `Shared`, other
255 // references may not mutate the referent outside of
256 // `UnsafeCell`s.
257 //
258 // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_ref
259 // [2]: https://doc.rust-lang.org/std/ptr/index.html#safety
260 unsafe { raw.as_ref() }
261 }
262 }
263
264 impl<'a, T, I> Ptr<'a, T, I>
265 where
266 T: 'a + ?Sized,
267 I: Invariants,
268 I::Aliasing: Reference,
269 {
270 /// Reborrows `self`, producing another `Ptr`.
271 ///
272 /// Since `self` is borrowed immutably, this prevents any mutable
273 /// methods from being called on `self` as long as the returned `Ptr`
274 /// exists.
275 #[doc(hidden)]
276 #[inline]
277 #[allow(clippy::needless_lifetimes)] // Allows us to name the lifetime in the safety comment below.
278 pub fn reborrow<'b>(&'b mut self) -> Ptr<'b, T, I>
279 where
280 'a: 'b,
281 {
282 // SAFETY: The following all hold by invariant on `self`, and thus
283 // hold of `ptr = self.as_inner()`:
284 // 0. SEE BELOW.
285 // 1. `ptr` conforms to the alignment invariant of
286 // [`I::Alignment`](invariant::Alignment).
287 // 2. `ptr` conforms to the validity invariant of
288 // [`I::Validity`](invariant::Validity). `self` and the returned
289 // `Ptr` permit the same bit values in their referents since they
290 // have the same referent type (`T`) and the same validity
291 // (`I::Validity`). Thus, regardless of what mutation is
292 // permitted (`Exclusive` aliasing or `Shared`-aliased interior
293 // mutation), neither can be used to write a value to the
294 // referent which violates the other's validity invariant.
295 //
296 // For aliasing (0 above), since `I::Aliasing: Reference`,
297 // there are two cases for `I::Aliasing`:
298 // - For `invariant::Shared`: `'a` outlives `'b`, and so the
299 // returned `Ptr` does not permit accessing the referent any
300 // longer than is possible via `self`. For shared aliasing, it is
301 // sound for multiple `Ptr`s to exist simultaneously which
302 // reference the same memory, so creating a new one is not
303 // problematic.
304 // - For `invariant::Exclusive`: Since `self` is `&'b mut` and we
305 // return a `Ptr` with lifetime `'b`, `self` is inaccessible to
306 // the caller for the lifetime `'b` - in other words, `self` is
307 // inaccessible to the caller as long as the returned `Ptr`
308 // exists. Since `self` is an exclusive `Ptr`, no other live
309 // references or `Ptr`s may exist which refer to the same memory
310 // while `self` is live. Thus, as long as the returned `Ptr`
311 // exists, no other references or `Ptr`s which refer to the same
312 // memory may be live.
313 unsafe { Ptr::from_inner(self.as_inner()) }
314 }
315 }
316
317 /// `Ptr<'a, T>` → `&'a mut T`
318 impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)>
319 where
320 T: 'a + ?Sized,
321 {
322 /// Converts `self` to a mutable reference.
323 #[allow(clippy::wrong_self_convention)]
324 pub(crate) fn as_mut(self) -> &'a mut T {
325 let mut raw = self.as_inner().as_non_null();
326 // SAFETY: This invocation of `NonNull::as_mut` satisfies its
327 // documented safety preconditions:
328 //
329 // 1. The pointer is properly aligned. This is ensured by-contract
330 // on `Ptr`, because the `ALIGNMENT_INVARIANT` is `Aligned`.
331 //
332 // 2. If the pointer's referent is not zero-sized, then the pointer
333 // must be “dereferenceable” in the sense defined in the module
334 // documentation; i.e.:
335 //
336 // > The memory range of the given size starting at the pointer
337 // > must all be within the bounds of a single allocated object.
338 // > [2]
339 //
340 // This is ensured by contract on all `PtrInner`s.
341 //
342 // 3. The pointer must point to a validly-initialized instance of
343 // `T`. This is ensured by-contract on `Ptr`, because the
344 // validity invariant is `Valid`.
345 //
346 // 4. You must enforce Rust’s aliasing rules. This is ensured by
347 // contract on `Ptr`, because the `ALIASING_INVARIANT` is
348 // `Exclusive`.
349 //
350 // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_mut
351 // [2]: https://doc.rust-lang.org/std/ptr/index.html#safety
352 unsafe { raw.as_mut() }
353 }
354 }
355
356 /// `Ptr<'a, T>` → `Ptr<'a, U>`
357 impl<'a, T: ?Sized, I> Ptr<'a, T, I>
358 where
359 I: Invariants,
360 {
361 pub(crate) fn transmute<U, V, R>(self) -> Ptr<'a, U, (I::Aliasing, Unaligned, V)>
362 where
363 V: Validity,
364 U: TransmuteFromPtr<T, I::Aliasing, I::Validity, V, R> + SizeEq<T> + ?Sized,
365 {
366 // SAFETY:
367 // - `SizeEq::cast_from_raw` promises to preserve address,
368 // provenance, and the number of bytes in the referent
369 // - If aliasing is `Shared`, then by `U: TransmuteFromPtr<T>`, at
370 // least one of the following holds:
371 // - `T: Immutable` and `U: Immutable`, in which case it is
372 // trivially sound for shared code to operate on a `&T` and `&U`
373 // at the same time, as neither can perform interior mutation
374 // - It is directly guaranteed that it is sound for shared code to
375 // operate on these references simultaneously
376 // - By `U: TransmuteFromPtr<T, I::Aliasing, I::Validity, V>`, it is
377 // sound to perform this transmute.
378 unsafe { self.transmute_unchecked(SizeEq::cast_from_raw) }
379 }
380
381 #[doc(hidden)]
382 #[inline(always)]
383 #[must_use]
384 pub fn recall_validity<V, R>(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, V)>
385 where
386 V: Validity,
387 T: TransmuteFromPtr<T, I::Aliasing, I::Validity, V, R>,
388 {
389 // SAFETY:
390 // - This cast is a no-op, and so trivially preserves address,
391 // referent size, and provenance
392 // - It is trivially sound to have multiple `&T` referencing the same
393 // referent simultaneously
394 // - By `T: TransmuteFromPtr<T, I::Aliasing, I::Validity, V>`, it is
395 // sound to perform this transmute.
396 let ptr = unsafe { self.transmute_unchecked(SizeEq::cast_from_raw) };
397 // SAFETY: `self` and `ptr` have the same address and referent type.
398 // Therefore, if `self` satisfies `I::Alignment`, then so does
399 // `ptr`.
400 unsafe { ptr.assume_alignment::<I::Alignment>() }
401 }
402
403 /// Casts to a different (unsized) target type without checking interior
404 /// mutability.
405 ///
406 /// Callers should prefer [`cast_unsized`] where possible.
407 ///
408 /// [`cast_unsized`]: Ptr::cast_unsized
409 ///
410 /// # Safety
411 ///
412 /// The caller promises that `u = cast(p)` is a pointer cast with the
413 /// following properties:
414 /// - `u` addresses a subset of the bytes addressed by `p`
415 /// - `u` has the same provenance as `p`
416 /// - If `I::Aliasing` is [`Shared`], it must not be possible for safe
417 /// code, operating on a `&T` and `&U` with the same referent
418 /// simultaneously, to cause undefined behavior
419 /// - It is sound to transmute a pointer of type `T` with aliasing
420 /// `I::Aliasing` and validity `I::Validity` to a pointer of type `U`
421 /// with aliasing `I::Aliasing` and validity `V`. This is a subtle
422 /// soundness requirement that is a function of `T`, `U`,
423 /// `I::Aliasing`, `I::Validity`, and `V`, and may depend upon the
424 /// presence, absence, or specific location of `UnsafeCell`s in `T`
425 /// and/or `U`. See [`Validity`] for more details.
426 #[doc(hidden)]
427 #[inline]
428 pub unsafe fn transmute_unchecked<U: ?Sized, V, F>(
429 self,
430 cast: F,
431 ) -> Ptr<'a, U, (I::Aliasing, Unaligned, V)>
432 where
433 V: Validity,
434 F: FnOnce(PtrInner<'a, T>) -> PtrInner<'a, U>,
435 {
436 let ptr = cast(self.as_inner());
437
438 // SAFETY:
439 //
440 // The following safety arguments rely on the fact that the caller
441 // promises that `cast` returns a `PtrInner` which addresses a
442 // prefix of the bytes of `*self`, and so properties that hold of
443 // `*self` also hold of `*ptr`.
444 //
445 // 0. `ptr` conforms to the aliasing invariant of `I::Aliasing`:
446 // - `Exclusive`: `self` is the only `Ptr` or reference which is
447 // permitted to read or modify the referent for the lifetime
448 // `'a`. Since we consume `self` by value, the returned pointer
449 // remains the only `Ptr` or reference which is permitted to
450 // read or modify the referent for the lifetime `'a`.
451 // - `Shared`: Since `self` has aliasing `Shared`, we know that
452 // no other code may mutate the referent during the lifetime
453 // `'a`, except via `UnsafeCell`s, and except as permitted by
454 // `T`'s library safety invariants. The caller promises that
455 // any safe operations which can be permitted on a `&T` and a
456 // `&U` simultaneously must be sound. Thus, no operations on a
457 // `&U` could violate `&T`'s library safety invariants, and
458 // vice-versa. Since any mutation via shared references outside
459 // of `UnsafeCell`s is unsound, this must be impossible using
460 // `&T` and `&U`.
461 // - `Inaccessible`: There are no restrictions we need to uphold.
462 // 1. `ptr` trivially satisfies the alignment invariant `Unaligned`.
463 // 2. The caller promises that `ptr` conforms to the validity
464 // invariant `V` with respect to its referent type, `U`.
465 unsafe { Ptr::from_inner(ptr) }
466 }
467 }
468
469 /// `Ptr<'a, T, (_, _, _)>` → `Ptr<'a, Unalign<T>, (_, Aligned, _)>`
470 impl<'a, T, I> Ptr<'a, T, I>
471 where
472 I: Invariants,
473 {
474 /// Converts a `Ptr` an unaligned `T` into a `Ptr` to an aligned
475 /// `Unalign<T>`.
476 pub(crate) fn into_unalign(
477 self,
478 ) -> Ptr<'a, crate::Unalign<T>, (I::Aliasing, Aligned, I::Validity)> {
479 // SAFETY:
480 // - This cast preserves provenance.
481 // - This cast preserves address. `Unalign<T>` promises to have the
482 // same size as `T`, and so the cast returns a pointer addressing
483 // the same byte range as `p`.
484 // - By the same argument, the returned pointer refers to
485 // `UnsafeCell`s at the same locations as `p`.
486 // - `Unalign<T>` promises to have the same bit validity as `T`. By
487 // invariant on `Validity`, the set of bit patterns allowed in the
488 // referent of a `Ptr<X, (_, _, V)>` is only a function of the
489 // validity of `X` and of `V`. Thus, the set of bit patterns
490 // allowed in the referent of a `Ptr<T, (_, _, I::Validity)>` is
491 // the same as the set of bit patterns allowed in the referent of
492 // a `Ptr<Unalign<T>, (_, _, I::Validity)>`. As a result, `self`
493 // and the returned `Ptr` permit the same set of bit patterns in
494 // their referents, and so neither can be used to violate the
495 // validity of the other.
496 let ptr = unsafe { self.transmute_unchecked(PtrInner::cast_sized) };
497 ptr.bikeshed_recall_aligned()
498 }
499 }
500
501 impl<'a, T, I> Ptr<'a, T, I>
502 where
503 T: ?Sized,
504 I: Invariants<Validity = Valid>,
505 I::Aliasing: Reference,
506 {
507 /// Reads the referent.
508 #[must_use]
509 #[inline]
510 pub fn read_unaligned<R>(self) -> T
511 where
512 T: Copy,
513 T: Read<I::Aliasing, R>,
514 {
515 (*self.into_unalign().as_ref()).into_inner()
516 }
517
518 /// Views the value as an aligned reference.
519 ///
520 /// This is only available if `T` is [`Unaligned`].
521 #[must_use]
522 #[inline]
523 pub fn unaligned_as_ref(self) -> &'a T
524 where
525 T: crate::Unaligned,
526 {
527 self.bikeshed_recall_aligned().as_ref()
528 }
529 }
530}
531
532/// State transitions between invariants.
533mod _transitions {
534 use super::*;
535 use crate::pointer::transmute::TryTransmuteFromPtr;
536
537 impl<'a, T, I> Ptr<'a, T, I>
538 where
539 T: 'a + ?Sized,
540 I: Invariants,
541 {
542 /// Returns a `Ptr` with [`Exclusive`] aliasing if `self` already has
543 /// `Exclusive` aliasing, or generates a compile-time assertion failure.
544 ///
545 /// This allows code which is generic over aliasing to down-cast to a
546 /// concrete aliasing.
547 ///
548 /// [`Exclusive`]: crate::pointer::invariant::Exclusive
549 #[inline]
550 pub(crate) fn into_exclusive_or_pme(
551 self,
552 ) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> {
553 // NOTE(https://github.com/rust-lang/rust/issues/131625): We do this
554 // rather than just having `Aliasing::IS_EXCLUSIVE` have the panic
555 // behavior because doing it that way causes rustdoc to fail while
556 // attempting to document hidden items (since it evaluates the
557 // constant - and thus panics).
558 trait AliasingExt: Aliasing {
559 const IS_EXCL: bool;
560 }
561
562 impl<A: Aliasing> AliasingExt for A {
563 const IS_EXCL: bool = {
564 const_assert!(Self::IS_EXCLUSIVE);
565 true
566 };
567 }
568
569 assert!(I::Aliasing::IS_EXCL);
570
571 // SAFETY: We've confirmed that `self` already has the aliasing
572 // `Exclusive`. If it didn't, either the preceding assert would fail
573 // or evaluating `I::Aliasing::IS_EXCL` would fail. We're *pretty*
574 // sure that it's guaranteed to fail const eval, but the `assert!`
575 // provides a backstop in case that doesn't work.
576 unsafe { self.assume_exclusive() }
577 }
578
579 /// Assumes that `self` satisfies the invariants `H`.
580 ///
581 /// # Safety
582 ///
583 /// The caller promises that `self` satisfies the invariants `H`.
584 unsafe fn assume_invariants<H: Invariants>(self) -> Ptr<'a, T, H> {
585 // SAFETY: The caller has promised to satisfy all parameterized
586 // invariants of `Ptr`. `Ptr`'s other invariants are satisfied
587 // by-contract by the source `Ptr`.
588 unsafe { Ptr::from_inner(self.as_inner()) }
589 }
590
591 /// Helps the type system unify two distinct invariant types which are
592 /// actually the same.
593 pub(crate) fn unify_invariants<
594 H: Invariants<Aliasing = I::Aliasing, Alignment = I::Alignment, Validity = I::Validity>,
595 >(
596 self,
597 ) -> Ptr<'a, T, H> {
598 // SAFETY: The associated type bounds on `H` ensure that the
599 // invariants are unchanged.
600 unsafe { self.assume_invariants::<H>() }
601 }
602
603 /// Assumes that `self` satisfies the aliasing requirement of `A`.
604 ///
605 /// # Safety
606 ///
607 /// The caller promises that `self` satisfies the aliasing requirement
608 /// of `A`.
609 #[inline]
610 pub(crate) unsafe fn assume_aliasing<A: Aliasing>(
611 self,
612 ) -> Ptr<'a, T, (A, I::Alignment, I::Validity)> {
613 // SAFETY: The caller promises that `self` satisfies the aliasing
614 // requirements of `A`.
615 unsafe { self.assume_invariants() }
616 }
617
618 /// Assumes `self` satisfies the aliasing requirement of [`Exclusive`].
619 ///
620 /// # Safety
621 ///
622 /// The caller promises that `self` satisfies the aliasing requirement
623 /// of `Exclusive`.
624 ///
625 /// [`Exclusive`]: crate::pointer::invariant::Exclusive
626 #[inline]
627 pub(crate) unsafe fn assume_exclusive(
628 self,
629 ) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> {
630 // SAFETY: The caller promises that `self` satisfies the aliasing
631 // requirements of `Exclusive`.
632 unsafe { self.assume_aliasing::<Exclusive>() }
633 }
634
635 /// Assumes that `self`'s referent is validly-aligned for `T` if
636 /// required by `A`.
637 ///
638 /// # Safety
639 ///
640 /// The caller promises that `self`'s referent conforms to the alignment
641 /// invariant of `T` if required by `A`.
642 #[inline]
643 pub(crate) unsafe fn assume_alignment<A: Alignment>(
644 self,
645 ) -> Ptr<'a, T, (I::Aliasing, A, I::Validity)> {
646 // SAFETY: The caller promises that `self`'s referent is
647 // well-aligned for `T` if required by `A` .
648 unsafe { self.assume_invariants() }
649 }
650
651 /// Checks the `self`'s alignment at runtime, returning an aligned `Ptr`
652 /// on success.
653 pub(crate) fn try_into_aligned(
654 self,
655 ) -> Result<Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>, AlignmentError<Self, T>>
656 where
657 T: Sized,
658 {
659 if let Err(err) =
660 crate::util::validate_aligned_to::<_, T>(self.as_inner().as_non_null())
661 {
662 return Err(err.with_src(self));
663 }
664
665 // SAFETY: We just checked the alignment.
666 Ok(unsafe { self.assume_alignment::<Aligned>() })
667 }
668
669 /// Recalls that `self`'s referent is validly-aligned for `T`.
670 #[inline]
671 // FIXME(#859): Reconsider the name of this method before making it
672 // public.
673 pub(crate) fn bikeshed_recall_aligned(
674 self,
675 ) -> Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>
676 where
677 T: crate::Unaligned,
678 {
679 // SAFETY: The bound `T: Unaligned` ensures that `T` has no
680 // non-trivial alignment requirement.
681 unsafe { self.assume_alignment::<Aligned>() }
682 }
683
684 /// Assumes that `self`'s referent conforms to the validity requirement
685 /// of `V`.
686 ///
687 /// # Safety
688 ///
689 /// The caller promises that `self`'s referent conforms to the validity
690 /// requirement of `V`.
691 #[doc(hidden)]
692 #[must_use]
693 #[inline]
694 pub unsafe fn assume_validity<V: Validity>(
695 self,
696 ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, V)> {
697 // SAFETY: The caller promises that `self`'s referent conforms to
698 // the validity requirement of `V`.
699 unsafe { self.assume_invariants() }
700 }
701
702 /// A shorthand for `self.assume_validity<invariant::Initialized>()`.
703 ///
704 /// # Safety
705 ///
706 /// The caller promises to uphold the safety preconditions of
707 /// `self.assume_validity<invariant::Initialized>()`.
708 #[doc(hidden)]
709 #[must_use]
710 #[inline]
711 pub unsafe fn assume_initialized(
712 self,
713 ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)> {
714 // SAFETY: The caller has promised to uphold the safety
715 // preconditions.
716 unsafe { self.assume_validity::<Initialized>() }
717 }
718
719 /// A shorthand for `self.assume_validity<Valid>()`.
720 ///
721 /// # Safety
722 ///
723 /// The caller promises to uphold the safety preconditions of
724 /// `self.assume_validity<Valid>()`.
725 #[doc(hidden)]
726 #[must_use]
727 #[inline]
728 pub unsafe fn assume_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)> {
729 // SAFETY: The caller has promised to uphold the safety
730 // preconditions.
731 unsafe { self.assume_validity::<Valid>() }
732 }
733
734 /// Recalls that `self`'s referent is initialized.
735 #[doc(hidden)]
736 #[must_use]
737 #[inline]
738 // FIXME(#859): Reconsider the name of this method before making it
739 // public.
740 pub fn bikeshed_recall_initialized_from_bytes(
741 self,
742 ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)>
743 where
744 T: crate::IntoBytes + crate::FromBytes,
745 I: Invariants<Validity = Valid>,
746 {
747 // SAFETY: The `T: IntoBytes + FromBytes` bound ensures that `T`'s
748 // bit validity is equivalent to `[u8]`. In other words, the set of
749 // allowed referents for a `Ptr<T, (_, _, Valid)>` is the set of
750 // initialized bit patterns. The same is true of the set of allowed
751 // referents for any `Ptr<_, (_, _, Initialized)>`. Thus, this call
752 // does not change the set of allowed values in the referent.
753 unsafe { self.assume_initialized() }
754 }
755
756 /// Recalls that `self`'s referent is initialized.
757 #[doc(hidden)]
758 #[must_use]
759 #[inline]
760 // FIXME(#859): Reconsider the name of this method before making it
761 // public.
762 pub fn bikeshed_recall_initialized_immutable(
763 self,
764 ) -> Ptr<'a, T, (Shared, I::Alignment, Initialized)>
765 where
766 T: crate::IntoBytes + crate::Immutable,
767 I: Invariants<Aliasing = Shared, Validity = Valid>,
768 {
769 // SAFETY: Let `O` (for "old") be the set of allowed bit patterns in
770 // `self`'s referent, and let `N` (for "new") be the set of allowed
771 // bit patterns in the referent of the returned `Ptr`. `T:
772 // IntoBytes` and `I: Invariants<Validity = Valid>` ensures that `O`
773 // cannot contain any uninitialized bit patterns. Since the returned
774 // `Ptr` has validity `Initialized`, `N` is equal to the set of all
775 // initialized bit patterns. Thus, `O` is a subset of `N`, and so
776 // the returned `Ptr`'s validity invariant is upheld.
777 //
778 // Since `T: Immutable` and aliasing is `Shared`, the returned `Ptr`
779 // cannot be used to modify the referent. Before this call, `self`'s
780 // referent is guaranteed by invariant on `Ptr` to satisfy `self`'s
781 // validity invariant. Since the returned `Ptr` cannot be used to
782 // modify the referent, this guarantee cannot be violated by the
783 // returned `Ptr` (even if `O` is a strict subset of `N`).
784 unsafe { self.assume_initialized() }
785 }
786
787 /// Checks that `self`'s referent is validly initialized for `T`,
788 /// returning a `Ptr` with `Valid` on success.
789 ///
790 /// # Panics
791 ///
792 /// This method will panic if
793 /// [`T::is_bit_valid`][TryFromBytes::is_bit_valid] panics.
794 ///
795 /// # Safety
796 ///
797 /// On error, unsafe code may rely on this method's returned
798 /// `ValidityError` containing `self`.
799 #[inline]
800 pub(crate) fn try_into_valid<R, S>(
801 mut self,
802 ) -> Result<Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)>, ValidityError<Self, T>>
803 where
804 T: TryFromBytes
805 + Read<I::Aliasing, R>
806 + TryTransmuteFromPtr<T, I::Aliasing, I::Validity, Valid, S>,
807 I::Aliasing: Reference,
808 I: Invariants<Validity = Initialized>,
809 {
810 // This call may panic. If that happens, it doesn't cause any soundness
811 // issues, as we have not generated any invalid state which we need to
812 // fix before returning.
813 if T::is_bit_valid(self.reborrow().forget_aligned()) {
814 // SAFETY: If `T::is_bit_valid`, code may assume that `self`
815 // contains a bit-valid instance of `T`. By `T:
816 // TryTransmuteFromPtr<T, I::Aliasing, I::Validity, Valid>`, so
817 // long as `self`'s referent conforms to the `Valid` validity
818 // for `T` (which we just confired), then this transmute is
819 // sound.
820 Ok(unsafe { self.assume_valid() })
821 } else {
822 Err(ValidityError::new(self))
823 }
824 }
825
826 /// Forgets that `self`'s referent is validly-aligned for `T`.
827 #[doc(hidden)]
828 #[must_use]
829 #[inline]
830 pub fn forget_aligned(self) -> Ptr<'a, T, (I::Aliasing, Unaligned, I::Validity)> {
831 // SAFETY: `Unaligned` is less restrictive than `Aligned`.
832 unsafe { self.assume_invariants() }
833 }
834 }
835}
836
837/// Casts of the referent type.
838mod _casts {
839 use super::*;
840
841 impl<'a, T, I> Ptr<'a, T, I>
842 where
843 T: 'a + ?Sized,
844 I: Invariants,
845 {
846 /// Casts to a different (unsized) target type without checking interior
847 /// mutability.
848 ///
849 /// Callers should prefer [`cast_unsized`] where possible.
850 ///
851 /// [`cast_unsized`]: Ptr::cast_unsized
852 ///
853 /// # Safety
854 ///
855 /// The caller promises that `u = cast(p)` is a pointer cast with the
856 /// following properties:
857 /// - `u` addresses a subset of the bytes addressed by `p`
858 /// - `u` has the same provenance as `p`
859 /// - If `I::Aliasing` is [`Shared`], it must not be possible for safe
860 /// code, operating on a `&T` and `&U` with the same referent
861 /// simultaneously, to cause undefined behavior
862 ///
863 /// `cast_unsized_unchecked` guarantees that the pointer passed to
864 /// `cast` will reference a byte sequence which is either contained
865 /// inside a single allocated object or is zero sized. In either case,
866 /// this means that its size will fit in an `isize` and it will not wrap
867 /// around the address space.
868 #[doc(hidden)]
869 #[inline]
870 pub unsafe fn cast_unsized_unchecked<U, F: FnOnce(PtrInner<'a, T>) -> PtrInner<'a, U>>(
871 self,
872 cast: F,
873 ) -> Ptr<'a, U, (I::Aliasing, Unaligned, I::Validity)>
874 where
875 U: 'a + CastableFrom<T, I::Validity, I::Validity> + ?Sized,
876 {
877 // SAFETY:
878 // - The caller promises that `u = cast(p)` is a pointer which
879 // satisfies:
880 // - `u` addresses a subset of the bytes addressed by `p`
881 // - `u` has the same provenance as `p`
882 // - If `I::Aliasing` is [`Shared`], it must not be possible for
883 // safe code, operating on a `&T` and `&U` with the same
884 // referent simultaneously, to cause undefined behavior
885 // - By `U: CastableFrom<T, I::Validity, I::Validity>`,
886 // `I::Validity` is either `Uninit` or `Initialized`. In both
887 // cases, the bit validity `I::Validity` has the same semantics
888 // regardless of referent type. In other words, the set of allowed
889 // referent values for `Ptr<T, (_, _, I::Validity)>` and `Ptr<U,
890 // (_, _, I::Validity)>` are identical. As a consequence, neither
891 // `self` nor the returned `Ptr` can be used to write values which
892 // are invalid for the other.
893 //
894 // `transmute_unchecked` guarantees that it will only pass pointers
895 // to `cast` which either reference a zero-sized byte range or
896 // reference a byte range which is entirely contained inside of an
897 // allocated object.
898 unsafe { self.transmute_unchecked(cast) }
899 }
900
901 /// Casts to a different (unsized) target type.
902 ///
903 /// # Safety
904 ///
905 /// The caller promises that `u = cast(p)` is a pointer cast with the
906 /// following properties:
907 /// - `u` addresses a subset of the bytes addressed by `p`
908 /// - `u` has the same provenance as `p`
909 #[doc(hidden)]
910 #[inline]
911 pub unsafe fn cast_unsized<U, F, R>(
912 self,
913 cast: F,
914 ) -> Ptr<'a, U, (I::Aliasing, Unaligned, I::Validity)>
915 where
916 T: MutationCompatible<U, I::Aliasing, I::Validity, I::Validity, R>,
917 U: 'a + ?Sized + CastableFrom<T, I::Validity, I::Validity>,
918 F: FnOnce(PtrInner<'a, T>) -> PtrInner<'a, U>,
919 {
920 // SAFETY: Because `T: MutationCompatible<U, I::Aliasing, R>`, one
921 // of the following holds:
922 // - `T: Read<I::Aliasing>` and `U: Read<I::Aliasing>`, in which
923 // case one of the following holds:
924 // - `I::Aliasing` is `Exclusive`
925 // - `T` and `U` are both `Immutable`
926 // - It is sound for safe code to operate on `&T` and `&U` with the
927 // same referent simultaneously
928 //
929 // The caller promises all other safety preconditions.
930 unsafe { self.cast_unsized_unchecked(cast) }
931 }
932 }
933
934 impl<'a, T, I> Ptr<'a, T, I>
935 where
936 T: 'a + KnownLayout + ?Sized,
937 I: Invariants<Validity = Initialized>,
938 {
939 /// Casts this pointer-to-initialized into a pointer-to-bytes.
940 #[allow(clippy::wrong_self_convention)]
941 #[must_use]
942 #[inline]
943 pub fn as_bytes<R>(self) -> Ptr<'a, [u8], (I::Aliasing, Aligned, Valid)>
944 where
945 T: Read<I::Aliasing, R>,
946 I::Aliasing: Reference,
947 {
948 // SAFETY: `PtrInner::as_bytes` returns a pointer which addresses
949 // the same byte range as its argument, and which has the same
950 // provenance.
951 let ptr = unsafe { self.cast_unsized(PtrInner::as_bytes) };
952 ptr.bikeshed_recall_aligned().recall_validity::<Valid, (_, (_, _))>()
953 }
954 }
955
956 impl<'a, T, I, const N: usize> Ptr<'a, [T; N], I>
957 where
958 T: 'a,
959 I: Invariants,
960 {
961 /// Casts this pointer-to-array into a slice.
962 #[allow(clippy::wrong_self_convention)]
963 pub(crate) fn as_slice(self) -> Ptr<'a, [T], I> {
964 let slice = self.as_inner().as_slice();
965 // SAFETY: Note that, by post-condition on `PtrInner::as_slice`,
966 // `slice` refers to the same byte range as `self.as_inner()`.
967 //
968 // 0. Thus, `slice` conforms to the aliasing invariant of
969 // `I::Aliasing` because `self` does.
970 // 1. By the above lemma, `slice` conforms to the alignment
971 // invariant of `I::Alignment` because `self` does.
972 // 2. Since `[T; N]` and `[T]` have the same bit validity [1][2],
973 // and since `self` and the returned `Ptr` have the same validity
974 // invariant, neither `self` nor the returned `Ptr` can be used
975 // to write a value to the referent which violates the other's
976 // validity invariant.
977 //
978 // [1] Per https://doc.rust-lang.org/1.81.0/reference/type-layout.html#array-layout:
979 //
980 // An array of `[T; N]` has a size of `size_of::<T>() * N` and the
981 // same alignment of `T`. Arrays are laid out so that the
982 // zero-based `nth` element of the array is offset from the start
983 // of the array by `n * size_of::<T>()` bytes.
984 //
985 // ...
986 //
987 // Slices have the same layout as the section of the array they
988 // slice.
989 //
990 // [2] Per https://doc.rust-lang.org/1.81.0/reference/types/array.html#array-types:
991 //
992 // All elements of arrays are always initialized
993 unsafe { Ptr::from_inner(slice) }
994 }
995 }
996
997 /// For caller convenience, these methods are generic over alignment
998 /// invariant. In practice, the referent is always well-aligned, because the
999 /// alignment of `[u8]` is 1.
1000 impl<'a, I> Ptr<'a, [u8], I>
1001 where
1002 I: Invariants<Validity = Valid>,
1003 {
1004 /// Attempts to cast `self` to a `U` using the given cast type.
1005 ///
1006 /// If `U` is a slice DST and pointer metadata (`meta`) is provided,
1007 /// then the cast will only succeed if it would produce an object with
1008 /// the given metadata.
1009 ///
1010 /// Returns `None` if the resulting `U` would be invalidly-aligned, if
1011 /// no `U` can fit in `self`, or if the provided pointer metadata
1012 /// describes an invalid instance of `U`. On success, returns a pointer
1013 /// to the largest-possible `U` which fits in `self`.
1014 ///
1015 /// # Safety
1016 ///
1017 /// The caller may assume that this implementation is correct, and may
1018 /// rely on that assumption for the soundness of their code. In
1019 /// particular, the caller may assume that, if `try_cast_into` returns
1020 /// `Some((ptr, remainder))`, then `ptr` and `remainder` refer to
1021 /// non-overlapping byte ranges within `self`, and that `ptr` and
1022 /// `remainder` entirely cover `self`. Finally:
1023 /// - If this is a prefix cast, `ptr` has the same address as `self`.
1024 /// - If this is a suffix cast, `remainder` has the same address as
1025 /// `self`.
1026 #[inline(always)]
1027 pub(crate) fn try_cast_into<U, R>(
1028 self,
1029 cast_type: CastType,
1030 meta: Option<U::PointerMetadata>,
1031 ) -> Result<
1032 (Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, Ptr<'a, [u8], I>),
1033 CastError<Self, U>,
1034 >
1035 where
1036 I::Aliasing: Reference,
1037 U: 'a + ?Sized + KnownLayout + Read<I::Aliasing, R>,
1038 {
1039 let (inner, remainder) =
1040 self.as_inner().try_cast_into(cast_type, meta).map_err(|err| {
1041 err.map_src(|inner|
1042 // SAFETY: `PtrInner::try_cast_into` promises to return its
1043 // original argument on error, which was originally produced
1044 // by `self.as_inner()`, which is guaranteed to satisfy
1045 // `Ptr`'s invariants.
1046 unsafe { Ptr::from_inner(inner) })
1047 })?;
1048
1049 // SAFETY:
1050 // 0. Since `U: Read<I::Aliasing, _>`, either:
1051 // - `I::Aliasing` is `Exclusive`, in which case both `src` and
1052 // `ptr` conform to `Exclusive`
1053 // - `I::Aliasing` is `Shared` and `U` is `Immutable` (we already
1054 // know that `[u8]: Immutable`). In this case, neither `U` nor
1055 // `[u8]` permit mutation, and so `Shared` aliasing is
1056 // satisfied.
1057 // 1. `ptr` conforms to the alignment invariant of `Aligned` because
1058 // it is derived from `try_cast_into`, which promises that the
1059 // object described by `target` is validly aligned for `U`.
1060 // 2. By trait bound, `self` - and thus `target` - is a bit-valid
1061 // `[u8]`. `Ptr<[u8], (_, _, Valid)>` and `Ptr<_, (_, _,
1062 // Initialized)>` have the same bit validity, and so neither
1063 // `self` nor `res` can be used to write a value to the referent
1064 // which violates the other's validity invariant.
1065 let res = unsafe { Ptr::from_inner(inner) };
1066
1067 // SAFETY:
1068 // 0. `self` and `remainder` both have the type `[u8]`. Thus, they
1069 // have `UnsafeCell`s at the same locations. Type casting does
1070 // not affect aliasing.
1071 // 1. `[u8]` has no alignment requirement.
1072 // 2. `self` has validity `Valid` and has type `[u8]`. Since
1073 // `remainder` references a subset of `self`'s referent, it is
1074 // also a bit-valid `[u8]`. Thus, neither `self` nor `remainder`
1075 // can be used to write a value to the referent which violates
1076 // the other's validity invariant.
1077 let remainder = unsafe { Ptr::from_inner(remainder) };
1078
1079 Ok((res, remainder))
1080 }
1081
1082 /// Attempts to cast `self` into a `U`, failing if all of the bytes of
1083 /// `self` cannot be treated as a `U`.
1084 ///
1085 /// In particular, this method fails if `self` is not validly-aligned
1086 /// for `U` or if `self`'s size is not a valid size for `U`.
1087 ///
1088 /// # Safety
1089 ///
1090 /// On success, the caller may assume that the returned pointer
1091 /// references the same byte range as `self`.
1092 #[allow(unused)]
1093 #[inline(always)]
1094 pub(crate) fn try_cast_into_no_leftover<U, R>(
1095 self,
1096 meta: Option<U::PointerMetadata>,
1097 ) -> Result<Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, CastError<Self, U>>
1098 where
1099 I::Aliasing: Reference,
1100 U: 'a + ?Sized + KnownLayout + Read<I::Aliasing, R>,
1101 {
1102 // FIXME(#67): Remove this allow. See NonNulSlicelExt for more
1103 // details.
1104 #[allow(unstable_name_collisions)]
1105 match self.try_cast_into(CastType::Prefix, meta) {
1106 Ok((slf, remainder)) => {
1107 if remainder.len() == 0 {
1108 Ok(slf)
1109 } else {
1110 // Undo the cast so we can return the original bytes.
1111 let slf = slf.as_bytes();
1112 // Restore the initial alignment invariant of `self`.
1113 //
1114 // SAFETY: The referent type of `slf` is now equal to
1115 // that of `self`, but the alignment invariants
1116 // nominally differ. Since `slf` and `self` refer to the
1117 // same memory and no actions have been taken that would
1118 // violate the original invariants on `self`, it is
1119 // sound to apply the alignment invariant of `self` onto
1120 // `slf`.
1121 let slf = unsafe { slf.assume_alignment::<I::Alignment>() };
1122 let slf = slf.unify_invariants();
1123 Err(CastError::Size(SizeError::<_, U>::new(slf)))
1124 }
1125 }
1126 Err(err) => Err(err),
1127 }
1128 }
1129 }
1130
1131 impl<'a, T, I> Ptr<'a, core::cell::UnsafeCell<T>, I>
1132 where
1133 T: 'a + ?Sized,
1134 I: Invariants<Aliasing = Exclusive>,
1135 {
1136 /// Converts this `Ptr` into a pointer to the underlying data.
1137 ///
1138 /// This call borrows the `UnsafeCell` mutably (at compile-time) which
1139 /// guarantees that we possess the only reference.
1140 ///
1141 /// This is like [`UnsafeCell::get_mut`], but for `Ptr`.
1142 ///
1143 /// [`UnsafeCell::get_mut`]: core::cell::UnsafeCell::get_mut
1144 #[must_use]
1145 #[inline(always)]
1146 pub fn get_mut(self) -> Ptr<'a, T, I> {
1147 // SAFETY:
1148 // - The closure uses an `as` cast, which preserves address range
1149 // and provenance.
1150 // - Aliasing is `Exclusive`, and so we are not required to promise
1151 // anything about the locations of `UnsafeCell`s.
1152 // - `UnsafeCell<T>` has the same bit validity as `T` [1].
1153 // Technically the term "representation" doesn't guarantee this,
1154 // but the subsequent sentence in the documentation makes it clear
1155 // that this is the intention.
1156 //
1157 // By invariant on `Validity`, since `T` and `UnsafeCell<T>` have
1158 // the same bit validity, then the set of values which may appear
1159 // in the referent of a `Ptr<T, (_, _, V)>` is the same as the set
1160 // which may appear in the referent of a `Ptr<UnsafeCell<T>, (_,
1161 // _, V)>`. Thus, neither `self` nor `ptr` may be used to write a
1162 // value to the referent which would violate the other's validity
1163 // invariant.
1164 //
1165 // [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
1166 //
1167 // `UnsafeCell<T>` has the same in-memory representation as its
1168 // inner type `T`. A consequence of this guarantee is that it is
1169 // possible to convert between `T` and `UnsafeCell<T>`.
1170 #[allow(clippy::as_conversions)]
1171 let ptr = unsafe { self.transmute_unchecked(|ptr| cast!(ptr)) };
1172
1173 // SAFETY: `UnsafeCell<T>` has the same alignment as `T` [1],
1174 // and so if `self` is guaranteed to be aligned, then so is the
1175 // returned `Ptr`.
1176 //
1177 // [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
1178 //
1179 // `UnsafeCell<T>` has the same in-memory representation as
1180 // its inner type `T`. A consequence of this guarantee is that
1181 // it is possible to convert between `T` and `UnsafeCell<T>`.
1182 let ptr = unsafe { ptr.assume_alignment::<I::Alignment>() };
1183 ptr.unify_invariants()
1184 }
1185 }
1186}
1187
1188/// Projections through the referent.
1189mod _project {
1190 use super::*;
1191
1192 impl<'a, T, I> Ptr<'a, [T], I>
1193 where
1194 T: 'a,
1195 I: Invariants,
1196 I::Aliasing: Reference,
1197 {
1198 /// Iteratively projects the elements `Ptr<T>` from `Ptr<[T]>`.
1199 pub(crate) fn iter(&self) -> impl Iterator<Item = Ptr<'a, T, I>> {
1200 // SAFETY:
1201 // 0. `elem` conforms to the aliasing invariant of `I::Aliasing`
1202 // because projection does not impact the aliasing invariant.
1203 // 1. `elem`, conditionally, conforms to the validity invariant of
1204 // `I::Alignment`. If `elem` is projected from data well-aligned
1205 // for `[T]`, `elem` will be valid for `T`.
1206 // 2. FIXME: Need to cite facts about `[T]`'s layout (same for the
1207 // preceding points)
1208 self.as_inner().iter().map(|elem| unsafe { Ptr::from_inner(elem) })
1209 }
1210 }
1211
1212 #[allow(clippy::needless_lifetimes)]
1213 impl<'a, T, I> Ptr<'a, T, I>
1214 where
1215 T: 'a + ?Sized + KnownLayout<PointerMetadata = usize>,
1216 I: Invariants,
1217 {
1218 /// The number of slice elements in the object referenced by `self`.
1219 pub(crate) fn len(&self) -> usize {
1220 self.as_inner().meta().get()
1221 }
1222 }
1223}
1224
1225#[cfg(test)]
1226mod tests {
1227 use core::mem::{self, MaybeUninit};
1228
1229 use super::*;
1230 #[allow(unused)] // Needed on our MSRV, but considered unused on later toolchains.
1231 use crate::util::AsAddress;
1232 use crate::{pointer::BecauseImmutable, util::testutil::AU64, FromBytes, Immutable};
1233
1234 mod test_ptr_try_cast_into_soundness {
1235 use super::*;
1236
1237 // This test is designed so that if `Ptr::try_cast_into_xxx` are
1238 // buggy, it will manifest as unsoundness that Miri can detect.
1239
1240 // - If `size_of::<T>() == 0`, `N == 4`
1241 // - Else, `N == 4 * size_of::<T>()`
1242 //
1243 // Each test will be run for each metadata in `metas`.
1244 fn test<T, I, const N: usize>(metas: I)
1245 where
1246 T: ?Sized + KnownLayout + Immutable + FromBytes,
1247 I: IntoIterator<Item = Option<T::PointerMetadata>> + Clone,
1248 {
1249 let mut bytes = [MaybeUninit::<u8>::uninit(); N];
1250 let initialized = [MaybeUninit::new(0u8); N];
1251 for start in 0..=bytes.len() {
1252 for end in start..=bytes.len() {
1253 // Set all bytes to uninitialized other than those in
1254 // the range we're going to pass to `try_cast_from`.
1255 // This allows Miri to detect out-of-bounds reads
1256 // because they read uninitialized memory. Without this,
1257 // some out-of-bounds reads would still be in-bounds of
1258 // `bytes`, and so might spuriously be accepted.
1259 bytes = [MaybeUninit::<u8>::uninit(); N];
1260 let bytes = &mut bytes[start..end];
1261 // Initialize only the byte range we're going to pass to
1262 // `try_cast_from`.
1263 bytes.copy_from_slice(&initialized[start..end]);
1264
1265 let bytes = {
1266 let bytes: *const [MaybeUninit<u8>] = bytes;
1267 #[allow(clippy::as_conversions)]
1268 let bytes = bytes as *const [u8];
1269 // SAFETY: We just initialized these bytes to valid
1270 // `u8`s.
1271 unsafe { &*bytes }
1272 };
1273
1274 // SAFETY: The bytes in `slf` must be initialized.
1275 unsafe fn validate_and_get_len<
1276 T: ?Sized + KnownLayout + FromBytes + Immutable,
1277 >(
1278 slf: Ptr<'_, T, (Shared, Aligned, Initialized)>,
1279 ) -> usize {
1280 let t = slf.recall_validity().as_ref();
1281
1282 let bytes = {
1283 let len = mem::size_of_val(t);
1284 let t: *const T = t;
1285 // SAFETY:
1286 // - We know `t`'s bytes are all initialized
1287 // because we just read it from `slf`, which
1288 // points to an initialized range of bytes. If
1289 // there's a bug and this doesn't hold, then
1290 // that's exactly what we're hoping Miri will
1291 // catch!
1292 // - Since `T: FromBytes`, `T` doesn't contain
1293 // any `UnsafeCell`s, so it's okay for `t: T`
1294 // and a `&[u8]` to the same memory to be
1295 // alive concurrently.
1296 unsafe { core::slice::from_raw_parts(t.cast::<u8>(), len) }
1297 };
1298
1299 // This assertion ensures that `t`'s bytes are read
1300 // and compared to another value, which in turn
1301 // ensures that Miri gets a chance to notice if any
1302 // of `t`'s bytes are uninitialized, which they
1303 // shouldn't be (see the comment above).
1304 assert_eq!(bytes, vec![0u8; bytes.len()]);
1305
1306 mem::size_of_val(t)
1307 }
1308
1309 for meta in metas.clone().into_iter() {
1310 for cast_type in [CastType::Prefix, CastType::Suffix] {
1311 if let Ok((slf, remaining)) = Ptr::from_ref(bytes)
1312 .try_cast_into::<T, BecauseImmutable>(cast_type, meta)
1313 {
1314 // SAFETY: All bytes in `bytes` have been
1315 // initialized.
1316 let len = unsafe { validate_and_get_len(slf) };
1317 assert_eq!(remaining.len(), bytes.len() - len);
1318 #[allow(unstable_name_collisions)]
1319 let bytes_addr = bytes.as_ptr().addr();
1320 #[allow(unstable_name_collisions)]
1321 let remaining_addr =
1322 remaining.as_inner().as_non_null().as_ptr().addr();
1323 match cast_type {
1324 CastType::Prefix => {
1325 assert_eq!(remaining_addr, bytes_addr + len)
1326 }
1327 CastType::Suffix => assert_eq!(remaining_addr, bytes_addr),
1328 }
1329
1330 if let Some(want) = meta {
1331 let got = KnownLayout::pointer_to_metadata(
1332 slf.as_inner().as_non_null().as_ptr(),
1333 );
1334 assert_eq!(got, want);
1335 }
1336 }
1337 }
1338
1339 if let Ok(slf) = Ptr::from_ref(bytes)
1340 .try_cast_into_no_leftover::<T, BecauseImmutable>(meta)
1341 {
1342 // SAFETY: All bytes in `bytes` have been
1343 // initialized.
1344 let len = unsafe { validate_and_get_len(slf) };
1345 assert_eq!(len, bytes.len());
1346
1347 if let Some(want) = meta {
1348 let got = KnownLayout::pointer_to_metadata(
1349 slf.as_inner().as_non_null().as_ptr(),
1350 );
1351 assert_eq!(got, want);
1352 }
1353 }
1354 }
1355 }
1356 }
1357 }
1358
1359 #[derive(FromBytes, KnownLayout, Immutable)]
1360 #[repr(C)]
1361 struct SliceDst<T> {
1362 a: u8,
1363 trailing: [T],
1364 }
1365
1366 // Each test case becomes its own `#[test]` function. We do this because
1367 // this test in particular takes far, far longer to execute under Miri
1368 // than all of our other tests combined. Previously, we had these
1369 // execute sequentially in a single test function. We run Miri tests in
1370 // parallel in CI, but this test being sequential meant that most of
1371 // that parallelism was wasted, as all other tests would finish in a
1372 // fraction of the total execution time, leaving this test to execute on
1373 // a single thread for the remainder of the test. By putting each test
1374 // case in its own function, we permit better use of available
1375 // parallelism.
1376 macro_rules! test {
1377 ($test_name:ident: $ty:ty) => {
1378 #[test]
1379 #[allow(non_snake_case)]
1380 fn $test_name() {
1381 const S: usize = core::mem::size_of::<$ty>();
1382 const N: usize = if S == 0 { 4 } else { S * 4 };
1383 test::<$ty, _, N>([None]);
1384
1385 // If `$ty` is a ZST, then we can't pass `None` as the
1386 // pointer metadata, or else computing the correct trailing
1387 // slice length will panic.
1388 if S == 0 {
1389 test::<[$ty], _, N>([Some(0), Some(1), Some(2), Some(3)]);
1390 test::<SliceDst<$ty>, _, N>([Some(0), Some(1), Some(2), Some(3)]);
1391 } else {
1392 test::<[$ty], _, N>([None, Some(0), Some(1), Some(2), Some(3)]);
1393 test::<SliceDst<$ty>, _, N>([None, Some(0), Some(1), Some(2), Some(3)]);
1394 }
1395 }
1396 };
1397 ($ty:ident) => {
1398 test!($ty: $ty);
1399 };
1400 ($($ty:ident),*) => { $(test!($ty);)* }
1401 }
1402
1403 test!(empty_tuple: ());
1404 test!(u8, u16, u32, u64, u128, usize, AU64);
1405 test!(i8, i16, i32, i64, i128, isize);
1406 test!(f32, f64);
1407 }
1408
1409 #[test]
1410 fn test_try_cast_into_explicit_count() {
1411 macro_rules! test {
1412 ($ty:ty, $bytes:expr, $elems:expr, $expect:expr) => {{
1413 let bytes = [0u8; $bytes];
1414 let ptr = Ptr::from_ref(&bytes[..]);
1415 let res =
1416 ptr.try_cast_into::<$ty, BecauseImmutable>(CastType::Prefix, Some($elems));
1417 if let Some(expect) = $expect {
1418 let (ptr, _) = res.unwrap();
1419 assert_eq!(
1420 KnownLayout::pointer_to_metadata(ptr.as_inner().as_non_null().as_ptr()),
1421 expect
1422 );
1423 } else {
1424 let _ = res.unwrap_err();
1425 }
1426 }};
1427 }
1428
1429 #[derive(KnownLayout, Immutable)]
1430 #[repr(C)]
1431 struct ZstDst {
1432 u: [u8; 8],
1433 slc: [()],
1434 }
1435
1436 test!(ZstDst, 8, 0, Some(0));
1437 test!(ZstDst, 7, 0, None);
1438
1439 test!(ZstDst, 8, usize::MAX, Some(usize::MAX));
1440 test!(ZstDst, 7, usize::MAX, None);
1441
1442 #[derive(KnownLayout, Immutable)]
1443 #[repr(C)]
1444 struct Dst {
1445 u: [u8; 8],
1446 slc: [u8],
1447 }
1448
1449 test!(Dst, 8, 0, Some(0));
1450 test!(Dst, 7, 0, None);
1451
1452 test!(Dst, 9, 1, Some(1));
1453 test!(Dst, 8, 1, None);
1454
1455 // If we didn't properly check for overflow, this would cause the
1456 // metadata to overflow to 0, and thus the cast would spuriously
1457 // succeed.
1458 test!(Dst, 8, usize::MAX - 8 + 1, None);
1459 }
1460}