zerocopy/util/macros.rs
1// Copyright 2023 The Fuchsia Authors
2//
3// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6// This file may not be copied, modified, or distributed except according to
7// those terms.
8
9/// Documents multiple unsafe blocks with a single safety comment.
10///
11/// Invoked as:
12///
13/// ```rust,ignore
14/// safety_comment! {
15/// // Non-doc comments come first.
16/// /// SAFETY:
17/// /// Safety comment starts on its own line.
18/// macro_1!(args);
19/// macro_2! { args };
20/// /// SAFETY:
21/// /// Subsequent safety comments are allowed but not required.
22/// macro_3! { args };
23/// }
24/// ```
25///
26/// The macro invocations are emitted, each decorated with the following
27/// attribute: `#[allow(clippy::undocumented_unsafe_blocks)]`.
28macro_rules! safety_comment {
29 (#[doc = r" SAFETY:"] $($(#[$attr:meta])* $macro:ident!$args:tt;)*) => {
30 #[allow(clippy::undocumented_unsafe_blocks, unused_attributes)]
31 const _: () = { $($(#[$attr])* $macro!$args;)* };
32 }
33}
34
35/// Unsafely implements trait(s) for a type.
36///
37/// # Safety
38///
39/// The trait impl must be sound.
40///
41/// When implementing `TryFromBytes`:
42/// - If no `is_bit_valid` impl is provided, then it must be valid for
43/// `is_bit_valid` to unconditionally return `true`. In other words, it must
44/// be the case that any initialized sequence of bytes constitutes a valid
45/// instance of `$ty`.
46/// - If an `is_bit_valid` impl is provided, then:
47/// - Regardless of whether the provided closure takes a `Ptr<$repr>` or
48/// `&$repr` argument, if `$ty` and `$repr` are different types, then it
49/// must be the case that, given `t: *mut $ty` and `let r = t as *mut
50/// $repr`:
51/// - `r` refers to an object of equal or lesser size than the object
52/// referred to by `t`.
53/// - `r` refers to an object with `UnsafeCell`s at the same byte ranges as
54/// the object referred to by `t`.
55/// - If the provided closure takes a `&$repr` argument, then given a `Ptr<'a,
56/// $ty>` which satisfies the preconditions of
57/// `TryFromBytes::<$ty>::is_bit_valid`, it must be guaranteed that the
58/// memory referenced by that `Ptr` always contains a valid `$repr`.
59/// - The impl of `is_bit_valid` must only return `true` for its argument
60/// `Ptr<$repr>` if the original `Ptr<$ty>` refers to a valid `$ty`.
61macro_rules! unsafe_impl {
62 // Implement `$trait` for `$ty` with no bounds.
63 ($(#[$attr:meta])* $ty:ty: $trait:ident $(; |$candidate:ident: MaybeAligned<$repr:ty>| $is_bit_valid:expr)?) => {
64 $(#[$attr])*
65 unsafe impl $trait for $ty {
66 unsafe_impl!(@method $trait $(; |$candidate: MaybeAligned<$repr>| $is_bit_valid)?);
67 }
68 };
69
70 // Implement all `$traits` for `$ty` with no bounds.
71 //
72 // The 2 arms under this one are there so we can apply
73 // N attributes for each one of M trait implementations.
74 // The simple solution of:
75 //
76 // ($(#[$attrs:meta])* $ty:ty: $($traits:ident),*) => {
77 // $( unsafe_impl!( $(#[$attrs])* $ty: $traits ) );*
78 // }
79 //
80 // Won't work. The macro processor sees that the outer repetition
81 // contains both $attrs and $traits and expects them to match the same
82 // amount of fragments.
83 //
84 // To solve this we must:
85 // 1. Pack the attributes into a single token tree fragment we can match over.
86 // 2. Expand the traits.
87 // 3. Unpack and expand the attributes.
88 ($(#[$attrs:meta])* $ty:ty: $($traits:ident),*) => {
89 unsafe_impl!(@impl_traits_with_packed_attrs { $(#[$attrs])* } $ty: $($traits),*)
90 };
91
92 (@impl_traits_with_packed_attrs $attrs:tt $ty:ty: $($traits:ident),*) => {
93 $( unsafe_impl!(@unpack_attrs $attrs $ty: $traits); )*
94 };
95
96 (@unpack_attrs { $(#[$attrs:meta])* } $ty:ty: $traits:ident) => {
97 unsafe_impl!($(#[$attrs])* $ty: $traits);
98 };
99
100 // This arm is identical to the following one, except it contains a
101 // preceding `const`. If we attempt to handle these with a single arm, there
102 // is an inherent ambiguity between `const` (the keyword) and `const` (the
103 // ident match for `$tyvar:ident`).
104 //
105 // To explain how this works, consider the following invocation:
106 //
107 // unsafe_impl!(const N: usize, T: ?Sized + Copy => Clone for Foo<T>);
108 //
109 // In this invocation, here are the assignments to meta-variables:
110 //
111 // |---------------|------------|
112 // | Meta-variable | Assignment |
113 // |---------------|------------|
114 // | $constname | N |
115 // | $constty | usize |
116 // | $tyvar | T |
117 // | $optbound | Sized |
118 // | $bound | Copy |
119 // | $trait | Clone |
120 // | $ty | Foo<T> |
121 // |---------------|------------|
122 //
123 // The following arm has the same behavior with the exception of the lack of
124 // support for a leading `const` parameter.
125 (
126 $(#[$attr:meta])*
127 const $constname:ident : $constty:ident $(,)?
128 $($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),*
129 => $trait:ident for $ty:ty $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
130 ) => {
131 unsafe_impl!(
132 @inner
133 $(#[$attr])*
134 @const $constname: $constty,
135 $($tyvar $(: $(? $optbound +)* + $($bound +)*)?,)*
136 => $trait for $ty $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
137 );
138 };
139 (
140 $(#[$attr:meta])*
141 $($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),*
142 => $trait:ident for $ty:ty $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
143 ) => {
144 unsafe_impl!(
145 @inner
146 $(#[$attr])*
147 $($tyvar $(: $(? $optbound +)* + $($bound +)*)?,)*
148 => $trait for $ty $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
149 );
150 };
151 (
152 @inner
153 $(#[$attr:meta])*
154 $(@const $constname:ident : $constty:ident,)*
155 $($tyvar:ident $(: $(? $optbound:ident +)* + $($bound:ident +)* )?,)*
156 => $trait:ident for $ty:ty $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
157 ) => {
158 $(#[$attr])*
159 #[allow(non_local_definitions)]
160 unsafe impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?),* $(, const $constname: $constty,)*> $trait for $ty {
161 unsafe_impl!(@method $trait $(; |$candidate: $(MaybeAligned<$ref_repr>)? $(Maybe<$ptr_repr>)?| $is_bit_valid)?);
162 }
163 };
164
165 (@method TryFromBytes ; |$candidate:ident: MaybeAligned<$repr:ty>| $is_bit_valid:expr) => {
166 #[allow(clippy::missing_inline_in_public_items)]
167 #[cfg_attr(coverage_nightly, coverage(off))]
168 fn only_derive_is_allowed_to_implement_this_trait() {}
169
170 #[inline]
171 fn is_bit_valid<AA: invariant::Aliasing + invariant::AtLeast<invariant::Shared>>(candidate: Maybe<'_, Self, AA>) -> bool {
172 // SAFETY:
173 // - The cast preserves address. The caller has promised that the
174 // cast results in an object of equal or lesser size, and so the
175 // cast returns a pointer which references a subset of the bytes
176 // of `p`.
177 // - The cast preserves provenance.
178 // - The caller has promised that the destination type has
179 // `UnsafeCell`s at the same byte ranges as the source type.
180 #[allow(clippy::as_conversions)]
181 let candidate = unsafe { candidate.cast_unsized::<$repr, _>(|p| p as *mut _) };
182
183 // SAFETY: The caller has promised that the referenced memory region
184 // will contain a valid `$repr`.
185 let $candidate = unsafe { candidate.assume_validity::<crate::pointer::invariant::Valid>() };
186 $is_bit_valid
187 }
188 };
189 (@method TryFromBytes ; |$candidate:ident: Maybe<$repr:ty>| $is_bit_valid:expr) => {
190 #[allow(clippy::missing_inline_in_public_items)]
191 #[cfg_attr(coverage_nightly, coverage(off))]
192 fn only_derive_is_allowed_to_implement_this_trait() {}
193
194 #[inline]
195 fn is_bit_valid<AA: invariant::Aliasing + invariant::AtLeast<invariant::Shared>>(candidate: Maybe<'_, Self, AA>) -> bool {
196 // SAFETY:
197 // - The cast preserves address. The caller has promised that the
198 // cast results in an object of equal or lesser size, and so the
199 // cast returns a pointer which references a subset of the bytes
200 // of `p`.
201 // - The cast preserves provenance.
202 // - The caller has promised that the destination type has
203 // `UnsafeCell`s at the same byte ranges as the source type.
204 #[allow(clippy::as_conversions)]
205 let $candidate = unsafe { candidate.cast_unsized::<$repr, _>(|p| p as *mut _) };
206
207 // Restore the invariant that the referent bytes are initialized.
208 // SAFETY: The above cast does not uninitialize any referent bytes;
209 // they remain initialized.
210 let $candidate = unsafe { $candidate.assume_validity::<crate::pointer::invariant::Initialized>() };
211
212 $is_bit_valid
213 }
214 };
215 (@method TryFromBytes) => {
216 #[allow(clippy::missing_inline_in_public_items)]
217 #[cfg_attr(coverage_nightly, coverage(off))]
218 fn only_derive_is_allowed_to_implement_this_trait() {}
219 #[inline(always)] fn is_bit_valid<A: invariant::Aliasing + invariant::AtLeast<invariant::Shared>>(_: Maybe<'_, Self, A>) -> bool { true }
220 };
221 (@method $trait:ident) => {
222 #[allow(clippy::missing_inline_in_public_items)]
223 #[cfg_attr(coverage_nightly, coverage(off))]
224 fn only_derive_is_allowed_to_implement_this_trait() {}
225 };
226 (@method $trait:ident; |$_candidate:ident $(: &$_ref_repr:ty)? $(: NonNull<$_ptr_repr:ty>)?| $_is_bit_valid:expr) => {
227 compile_error!("Can't provide `is_bit_valid` impl for trait other than `TryFromBytes`");
228 };
229}
230
231/// Implements `$trait` for a type which implements `TransparentWrapper`.
232///
233/// Calling this macro is safe; the internals of the macro emit appropriate
234/// trait bounds which ensure that the given impl is sound.
235macro_rules! impl_for_transparent_wrapper {
236 (
237 $(#[$attr:meta])*
238 $($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?)?
239 => $trait:ident for $ty:ty $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
240 ) => {
241 $(#[$attr])*
242 #[allow(non_local_definitions)]
243
244 // This block implements `$trait` for `$ty` under the following
245 // conditions:
246 // - `$ty: TransparentWrapper`
247 // - `$ty::Inner: $trait`
248 // - For some `Xxx`, `$ty::XxxVariance = Covariant` (`Xxx` is determined
249 // by the `@define_is_transparent_wrapper` macro arms). This bound
250 // ensures that some layout property is the same between `$ty` and
251 // `$ty::Inner`. Which layout property this is depends on the trait
252 // being implemented (for example, `FromBytes` is not concerned with
253 // alignment, but is concerned with bit validity).
254 //
255 // In other words, `$ty` is guaranteed to soundly implement `$trait`
256 // because some property of its layout is the same as `$ty::Inner`,
257 // which implements `$trait`. Most of the complexity in this macro is to
258 // ensure that the above-mentioned conditions are actually met, and that
259 // the proper variance (ie, the proper layout property) is chosen.
260
261 // SAFETY:
262 // - `is_transparent_wrapper<I, W>` requires:
263 // - `W: TransparentWrapper<I>`
264 // - `W::Inner: $trait`
265 // - `f` is generic over `I: Invariants`, and in its body, calls
266 // `is_transparent_wrapper::<I, $ty>()`. Thus, this code will only
267 // compile if, for all `I: Invariants`:
268 // - `$ty: TransparentWrapper<I>`
269 // - `$ty::Inner: $trait`
270 //
271 // These two facts - that `$ty: TransparentWrapper<I>` and that
272 // `$ty::Inner: $trait` - are the preconditions to the full safety
273 // proofs, which are completed below in the
274 // `@define_is_transparent_wrapper` macro arms. The safety proof is
275 // slightly different for each trait.
276 unsafe impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?)?> $trait for $ty {
277 #[allow(dead_code, clippy::missing_inline_in_public_items)]
278 #[cfg_attr(coverage_nightly, coverage(off))]
279 fn only_derive_is_allowed_to_implement_this_trait() {
280 use crate::{pointer::invariant::Invariants, util::*};
281
282 impl_for_transparent_wrapper!(@define_is_transparent_wrapper $trait);
283
284 #[cfg_attr(coverage_nightly, coverage(off))]
285 fn f<I: Invariants, $($tyvar $(: $(? $optbound +)* $($bound +)*)?)?>() {
286 is_transparent_wrapper::<I, $ty>();
287 }
288 }
289
290 impl_for_transparent_wrapper!(
291 @is_bit_valid
292 $(<$tyvar $(: $(? $optbound +)* $($bound +)*)?>)?
293 $trait for $ty
294 );
295 }
296 };
297 (@define_is_transparent_wrapper Immutable) => {
298 // SAFETY: `W: TransparentWrapper<UnsafeCellVariance = Covariant>`
299 // requires that `W` has `UnsafeCell`s at the same byte offsets as
300 // `W::Inner`. `W::Inner: Immutable` implies that `W::Inner` does not
301 // contain any `UnsafeCell`s, and so `W` does not contain any
302 // `UnsafeCell`s. Since `W = $ty`, `$ty` can soundly implement
303 // `Immutable`.
304 impl_for_transparent_wrapper!(@define_is_transparent_wrapper Immutable, UnsafeCellVariance)
305 };
306 (@define_is_transparent_wrapper FromZeros) => {
307 // SAFETY: `W: TransparentWrapper<ValidityVariance = Covariant>`
308 // requires that `W` has the same bit validity as `W::Inner`. `W::Inner:
309 // FromZeros` implies that the all-zeros bit pattern is a bit-valid
310 // instance of `W::Inner`, and so the all-zeros bit pattern is a
311 // bit-valid instance of `W`. Since `W = $ty`, `$ty` can soundly
312 // implement `FromZeros`.
313 impl_for_transparent_wrapper!(@define_is_transparent_wrapper FromZeros, ValidityVariance)
314 };
315 (@define_is_transparent_wrapper FromBytes) => {
316 // SAFETY: `W: TransparentWrapper<ValidityVariance = Covariant>`
317 // requires that `W` has the same bit validity as `W::Inner`. `W::Inner:
318 // FromBytes` implies that any initialized bit pattern is a bit-valid
319 // instance of `W::Inner`, and so any initialized bit pattern is a
320 // bit-valid instance of `W`. Since `W = $ty`, `$ty` can soundly
321 // implement `FromBytes`.
322 impl_for_transparent_wrapper!(@define_is_transparent_wrapper FromBytes, ValidityVariance)
323 };
324 (@define_is_transparent_wrapper IntoBytes) => {
325 // SAFETY: `W: TransparentWrapper<ValidityVariance = Covariant>`
326 // requires that `W` has the same bit validity as `W::Inner`. `W::Inner:
327 // IntoBytes` implies that no bit-valid instance of `W::Inner` contains
328 // uninitialized bytes, and so no bit-valid instance of `W` contains
329 // uninitialized bytes. Since `W = $ty`, `$ty` can soundly implement
330 // `IntoBytes`.
331 impl_for_transparent_wrapper!(@define_is_transparent_wrapper IntoBytes, ValidityVariance)
332 };
333 (@define_is_transparent_wrapper Unaligned) => {
334 // SAFETY: `W: TransparentWrapper<AlignmentVariance = Covariant>`
335 // requires that `W` has the same alignment as `W::Inner`. `W::Inner:
336 // Unaligned` implies `W::Inner`'s alignment is 1, and so `W`'s
337 // alignment is 1. Since `W = $ty`, `W` can soundly implement
338 // `Unaligned`.
339 impl_for_transparent_wrapper!(@define_is_transparent_wrapper Unaligned, AlignmentVariance)
340 };
341 (@define_is_transparent_wrapper TryFromBytes) => {
342 // SAFETY: `W: TransparentWrapper<ValidityVariance = Covariant>`
343 // requires that `W` has the same bit validity as `W::Inner`. `W::Inner:
344 // TryFromBytes` implies that `<W::Inner as
345 // TryFromBytes>::is_bit_valid(c)` only returns `true` if `c` references
346 // a bit-valid instance of `W::Inner`. Thus, `<W::Inner as
347 // TryFromBytes>::is_bit_valid(c)` only returns `true` if `c` references
348 // a bit-valid instance of `W`. Below, we implement `<W as
349 // TryFromBytes>::is_bit_valid` by deferring to `<W::Inner as
350 // TryFromBytes>::is_bit_valid`. Since `W = $ty`, it is sound for `$ty`
351 // to implement `TryFromBytes` with this implementation of
352 // `is_bit_valid`.
353 impl_for_transparent_wrapper!(@define_is_transparent_wrapper TryFromBytes, ValidityVariance)
354 };
355 (@define_is_transparent_wrapper $trait:ident, $variance:ident) => {
356 #[cfg_attr(coverage_nightly, coverage(off))]
357 fn is_transparent_wrapper<I: Invariants, W: TransparentWrapper<I, $variance = Covariant> + ?Sized>()
358 where
359 W::Inner: $trait,
360 {}
361 };
362 (
363 @is_bit_valid
364 $(<$tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?>)?
365 TryFromBytes for $ty:ty
366 ) => {
367 // SAFETY: See safety comment in `(@define_is_transparent_wrapper
368 // TryFromBytes)` macro arm for an explanation of why this is a sound
369 // implementation of `is_bit_valid`.
370 #[inline]
371 fn is_bit_valid<A: crate::pointer::invariant::Aliasing + crate::pointer::invariant::AtLeast<invariant::Shared>>(candidate: Maybe<'_, Self, A>) -> bool {
372 TryFromBytes::is_bit_valid(candidate.transparent_wrapper_into_inner())
373 }
374 };
375 (
376 @is_bit_valid
377 $(<$tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?>)?
378 $trait:ident for $ty:ty
379 ) => {
380 // Trait other than `TryFromBytes`; no `is_bit_valid` impl.
381 };
382}
383
384/// Implements a trait for a type, bounding on each memeber of the power set of
385/// a set of type variables. This is useful for implementing traits for tuples
386/// or `fn` types.
387///
388/// The last argument is the name of a macro which will be called in every
389/// `impl` block, and is expected to expand to the name of the type for which to
390/// implement the trait.
391///
392/// For example, the invocation:
393/// ```ignore
394/// unsafe_impl_for_power_set!(A, B => Foo for type!(...))
395/// ```
396/// ...expands to:
397/// ```ignore
398/// unsafe impl Foo for type!() { ... }
399/// unsafe impl<B> Foo for type!(B) { ... }
400/// unsafe impl<A, B> Foo for type!(A, B) { ... }
401/// ```
402macro_rules! unsafe_impl_for_power_set {
403 (
404 $first:ident $(, $rest:ident)* $(-> $ret:ident)? => $trait:ident for $macro:ident!(...)
405 $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
406 ) => {
407 unsafe_impl_for_power_set!(
408 $($rest),* $(-> $ret)? => $trait for $macro!(...)
409 $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
410 );
411 unsafe_impl_for_power_set!(
412 @impl $first $(, $rest)* $(-> $ret)? => $trait for $macro!(...)
413 $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
414 );
415 };
416 (
417 $(-> $ret:ident)? => $trait:ident for $macro:ident!(...)
418 $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
419 ) => {
420 unsafe_impl_for_power_set!(
421 @impl $(-> $ret)? => $trait for $macro!(...)
422 $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
423 );
424 };
425 (
426 @impl $($vars:ident),* $(-> $ret:ident)? => $trait:ident for $macro:ident!(...)
427 $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
428 ) => {
429 unsafe_impl!(
430 $($vars,)* $($ret)? => $trait for $macro!($($vars),* $(-> $ret)?)
431 $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
432 );
433 };
434}
435
436/// Expands to an `Option<extern "C" fn>` type with the given argument types and
437/// return type. Designed for use with `unsafe_impl_for_power_set`.
438macro_rules! opt_extern_c_fn {
439 ($($args:ident),* -> $ret:ident) => { Option<extern "C" fn($($args),*) -> $ret> };
440}
441
442/// Expands to a `Option<fn>` type with the given argument types and return
443/// type. Designed for use with `unsafe_impl_for_power_set`.
444macro_rules! opt_fn {
445 ($($args:ident),* -> $ret:ident) => { Option<fn($($args),*) -> $ret> };
446}
447
448/// Implements trait(s) for a type or verifies the given implementation by
449/// referencing an existing (derived) implementation.
450///
451/// This macro exists so that we can provide zerocopy-derive as an optional
452/// dependency and still get the benefit of using its derives to validate that
453/// our trait impls are sound.
454///
455/// When compiling without `--cfg 'feature = "derive"` and without `--cfg test`,
456/// `impl_or_verify!` emits the provided trait impl. When compiling with either
457/// of those cfgs, it is expected that the type in question is deriving the
458/// traits instead. In this case, `impl_or_verify!` emits code which validates
459/// that the given trait impl is at least as restrictive as the the impl emitted
460/// by the custom derive. This has the effect of confirming that the impl which
461/// is emitted when the `derive` feature is disabled is actually sound (on the
462/// assumption that the impl emitted by the custom derive is sound).
463///
464/// The caller is still required to provide a safety comment (e.g. using the
465/// `safety_comment!` macro) . The reason for this restriction is that, while
466/// `impl_or_verify!` can guarantee that the provided impl is sound when it is
467/// compiled with the appropriate cfgs, there is no way to guarantee that it is
468/// ever compiled with those cfgs. In particular, it would be possible to
469/// accidentally place an `impl_or_verify!` call in a context that is only ever
470/// compiled when the `derive` feature is disabled. If that were to happen,
471/// there would be nothing to prevent an unsound trait impl from being emitted.
472/// Requiring a safety comment reduces the likelihood of emitting an unsound
473/// impl in this case, and also provides useful documentation for readers of the
474/// code.
475///
476/// Finally, if a `TryFromBytes::is_bit_valid` impl is provided, it must adhere
477/// to the safety preconditions of [`unsafe_impl!`].
478///
479/// ## Example
480///
481/// ```rust,ignore
482/// // Note that these derives are gated by `feature = "derive"`
483/// #[cfg_attr(any(feature = "derive", test), derive(FromZeros, FromBytes, IntoBytes, Unaligned))]
484/// #[repr(transparent)]
485/// struct Wrapper<T>(T);
486///
487/// safety_comment! {
488/// /// SAFETY:
489/// /// `Wrapper<T>` is `repr(transparent)`, so it is sound to implement any
490/// /// zerocopy trait if `T` implements that trait.
491/// impl_or_verify!(T: FromZeros => FromZeros for Wrapper<T>);
492/// impl_or_verify!(T: FromBytes => FromBytes for Wrapper<T>);
493/// impl_or_verify!(T: IntoBytes => IntoBytes for Wrapper<T>);
494/// impl_or_verify!(T: Unaligned => Unaligned for Wrapper<T>);
495/// }
496/// ```
497macro_rules! impl_or_verify {
498 // The following two match arms follow the same pattern as their
499 // counterparts in `unsafe_impl!`; see the documentation on those arms for
500 // more details.
501 (
502 const $constname:ident : $constty:ident $(,)?
503 $($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),*
504 => $trait:ident for $ty:ty
505 ) => {
506 impl_or_verify!(@impl { unsafe_impl!(
507 const $constname: $constty, $($tyvar $(: $(? $optbound +)* $($bound +)*)?),* => $trait for $ty
508 ); });
509 impl_or_verify!(@verify $trait, {
510 impl<const $constname: $constty, $($tyvar $(: $(? $optbound +)* $($bound +)*)?),*> Subtrait for $ty {}
511 });
512 };
513 (
514 $($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),*
515 => $trait:ident for $ty:ty $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)?
516 ) => {
517 impl_or_verify!(@impl { unsafe_impl!(
518 $($tyvar $(: $(? $optbound +)* $($bound +)*)?),* => $trait for $ty
519 $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)?
520 ); });
521 impl_or_verify!(@verify $trait, {
522 impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?),*> Subtrait for $ty {}
523 });
524 };
525 (@impl $impl_block:tt) => {
526 #[cfg(not(any(feature = "derive", test)))]
527 const _: () = { $impl_block };
528 };
529 (@verify $trait:ident, $impl_block:tt) => {
530 #[cfg(any(feature = "derive", test))]
531 const _: () = {
532 trait Subtrait: $trait {}
533 $impl_block
534 };
535 };
536}
537
538/// Implements `KnownLayout` for a sized type.
539macro_rules! impl_known_layout {
540 ($(const $constvar:ident : $constty:ty, $tyvar:ident $(: ?$optbound:ident)? => $ty:ty),* $(,)?) => {
541 $(impl_known_layout!(@inner const $constvar: $constty, $tyvar $(: ?$optbound)? => $ty);)*
542 };
543 ($($tyvar:ident $(: ?$optbound:ident)? => $ty:ty),* $(,)?) => {
544 $(impl_known_layout!(@inner , $tyvar $(: ?$optbound)? => $ty);)*
545 };
546 ($($ty:ty),*) => { $(impl_known_layout!(@inner , => $ty);)* };
547 (@inner $(const $constvar:ident : $constty:ty)? , $($tyvar:ident $(: ?$optbound:ident)?)? => $ty:ty) => {
548 const _: () = {
549 use core::ptr::NonNull;
550
551 #[allow(non_local_definitions)]
552 // SAFETY: Delegates safety to `DstLayout::for_type`.
553 unsafe impl<$($tyvar $(: ?$optbound)?)? $(, const $constvar : $constty)?> KnownLayout for $ty {
554 #[allow(clippy::missing_inline_in_public_items)]
555 #[cfg_attr(coverage_nightly, coverage(off))]
556 fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized {}
557
558 type PointerMetadata = ();
559
560 // SAFETY: `CoreMaybeUninit<T>::LAYOUT` and `T::LAYOUT` are
561 // identical because `CoreMaybeUninit<T>` has the same size and
562 // alignment as `T` [1], and `CoreMaybeUninit` admits
563 // uninitialized bytes in all positions.
564 //
565 // [1] Per https://doc.rust-lang.org/1.81.0/std/mem/union.MaybeUninit.html#layout-1:
566 //
567 // `MaybeUninit<T>` is guaranteed to have the same size,
568 // alignment, and ABI as `T`
569 type MaybeUninit = core::mem::MaybeUninit<Self>;
570
571 const LAYOUT: crate::DstLayout = crate::DstLayout::for_type::<$ty>();
572
573 // SAFETY: `.cast` preserves address and provenance.
574 //
575 // TODO(#429): Add documentation to `.cast` that promises that
576 // it preserves provenance.
577 #[inline(always)]
578 fn raw_from_ptr_len(bytes: NonNull<u8>, _meta: ()) -> NonNull<Self> {
579 bytes.cast::<Self>()
580 }
581
582 #[inline(always)]
583 fn pointer_to_metadata(_ptr: *mut Self) -> () {
584 }
585 }
586 };
587 };
588}
589
590/// Implements `KnownLayout` for a type in terms of the implementation of
591/// another type with the same representation.
592///
593/// # Safety
594///
595/// - `$ty` and `$repr` must have the same:
596/// - Fixed prefix size
597/// - Alignment
598/// - (For DSTs) trailing slice element size
599/// - It must be valid to perform an `as` cast from `*mut $repr` to `*mut $ty`,
600/// and this operation must preserve referent size (ie, `size_of_val_raw`).
601macro_rules! unsafe_impl_known_layout {
602 ($($tyvar:ident: ?Sized + KnownLayout =>)? #[repr($repr:ty)] $ty:ty) => {
603 const _: () = {
604 use core::ptr::NonNull;
605
606 #[allow(non_local_definitions)]
607 unsafe impl<$($tyvar: ?Sized + KnownLayout)?> KnownLayout for $ty {
608 #[allow(clippy::missing_inline_in_public_items)]
609 #[cfg_attr(coverage_nightly, coverage(off))]
610 fn only_derive_is_allowed_to_implement_this_trait() {}
611
612 type PointerMetadata = <$repr as KnownLayout>::PointerMetadata;
613 type MaybeUninit = <$repr as KnownLayout>::MaybeUninit;
614
615 const LAYOUT: DstLayout = <$repr as KnownLayout>::LAYOUT;
616
617 // SAFETY: All operations preserve address and provenance.
618 // Caller has promised that the `as` cast preserves size.
619 //
620 // TODO(#429): Add documentation to `NonNull::new_unchecked`
621 // that it preserves provenance.
622 #[inline(always)]
623 fn raw_from_ptr_len(bytes: NonNull<u8>, meta: <$repr as KnownLayout>::PointerMetadata) -> NonNull<Self> {
624 #[allow(clippy::as_conversions)]
625 let ptr = <$repr>::raw_from_ptr_len(bytes, meta).as_ptr() as *mut Self;
626 // SAFETY: `ptr` was converted from `bytes`, which is non-null.
627 unsafe { NonNull::new_unchecked(ptr) }
628 }
629
630 #[inline(always)]
631 fn pointer_to_metadata(ptr: *mut Self) -> Self::PointerMetadata {
632 #[allow(clippy::as_conversions)]
633 let ptr = ptr as *mut $repr;
634 <$repr>::pointer_to_metadata(ptr)
635 }
636 }
637 };
638 };
639}
640
641/// Uses `align_of` to confirm that a type or set of types have alignment 1.
642///
643/// Note that `align_of<T>` requires `T: Sized`, so this macro doesn't work for
644/// unsized types.
645macro_rules! assert_unaligned {
646 ($($tys:ty),*) => {
647 $(
648 // We only compile this assertion under `cfg(test)` to avoid taking
649 // an extra non-dev dependency (and making this crate more expensive
650 // to compile for our dependents).
651 #[cfg(test)]
652 static_assertions::const_assert_eq!(core::mem::align_of::<$tys>(), 1);
653 )*
654 };
655}
656
657/// Emits a function definition as either `const fn` or `fn` depending on
658/// whether the current toolchain version supports `const fn` with generic trait
659/// bounds.
660macro_rules! maybe_const_trait_bounded_fn {
661 // This case handles both `self` methods (where `self` is by value) and
662 // non-method functions. Each `$args` may optionally be followed by `:
663 // $arg_tys:ty`, which can be omitted for `self`.
664 ($(#[$attr:meta])* $vis:vis const fn $name:ident($($args:ident $(: $arg_tys:ty)?),* $(,)?) $(-> $ret_ty:ty)? $body:block) => {
665 #[cfg(zerocopy_generic_bounds_in_const_fn_1_61_0)]
666 $(#[$attr])* $vis const fn $name($($args $(: $arg_tys)?),*) $(-> $ret_ty)? $body
667
668 #[cfg(not(zerocopy_generic_bounds_in_const_fn_1_61_0))]
669 $(#[$attr])* $vis fn $name($($args $(: $arg_tys)?),*) $(-> $ret_ty)? $body
670 };
671}
672
673/// Either panic (if the current Rust toolchain supports panicking in `const
674/// fn`) or evaluate a constant that will cause an array indexing error whose
675/// error message will include the format string.
676///
677/// The type that this expression evaluates to must be `Copy`, or else the
678/// non-panicking desugaring will fail to compile.
679macro_rules! const_panic {
680 (@non_panic $($_arg:tt)+) => {{
681 // This will type check to whatever type is expected based on the call
682 // site.
683 let panic: [_; 0] = [];
684 // This will always fail (since we're indexing into an array of size 0.
685 #[allow(unconditional_panic)]
686 panic[0]
687 }};
688 ($($arg:tt)+) => {{
689 #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)]
690 panic!($($arg)+);
691 #[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
692 const_panic!(@non_panic $($arg)+)
693 }};
694}
695
696/// Either assert (if the current Rust toolchain supports panicking in `const
697/// fn`) or evaluate the expression and, if it evaluates to `false`, call
698/// `const_panic!`. This is used in place of `assert!` in const contexts to
699/// accommodate old toolchains.
700macro_rules! const_assert {
701 ($e:expr) => {{
702 #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)]
703 assert!($e);
704 #[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
705 {
706 let e = $e;
707 if !e {
708 let _: () = const_panic!(@non_panic concat!("assertion failed: ", stringify!($e)));
709 }
710 }
711 }};
712 ($e:expr, $($args:tt)+) => {{
713 #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)]
714 assert!($e, $($args)+);
715 #[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
716 {
717 let e = $e;
718 if !e {
719 let _: () = const_panic!(@non_panic concat!("assertion failed: ", stringify!($e), ": ", stringify!($arg)), $($args)*);
720 }
721 }
722 }};
723}
724
725/// Like `const_assert!`, but relative to `debug_assert!`.
726macro_rules! const_debug_assert {
727 ($e:expr $(, $msg:expr)?) => {{
728 #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)]
729 debug_assert!($e $(, $msg)?);
730 #[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
731 {
732 // Use this (rather than `#[cfg(debug_assertions)]`) to ensure that
733 // `$e` is always compiled even if it will never be evaluated at
734 // runtime.
735 if cfg!(debug_assertions) {
736 let e = $e;
737 if !e {
738 let _: () = const_panic!(@non_panic concat!("assertion failed: ", stringify!($e) $(, ": ", $msg)?));
739 }
740 }
741 }
742 }}
743}
744
745/// Either invoke `unreachable!()` or `loop {}` depending on whether the Rust
746/// toolchain supports panicking in `const fn`.
747macro_rules! const_unreachable {
748 () => {{
749 #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)]
750 unreachable!();
751
752 #[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
753 loop {}
754 }};
755}
756
757/// Asserts at compile time that `$condition` is true for `Self` or the given
758/// `$tyvar`s. Unlike `const_assert`, this is *strictly* a compile-time check;
759/// it cannot be evaluated in a runtime context. The condition is checked after
760/// monomorphization and, upon failure, emits a compile error.
761macro_rules! static_assert {
762 (Self $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )? => $condition:expr $(, $args:tt)*) => {{
763 trait StaticAssert {
764 const ASSERT: bool;
765 }
766
767 impl<T $(: $(? $optbound +)* $($bound +)*)?> StaticAssert for T {
768 const ASSERT: bool = {
769 const_assert!($condition $(, $args)*);
770 $condition
771 };
772 }
773
774 const_assert!(<Self as StaticAssert>::ASSERT);
775 }};
776 ($($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),* => $condition:expr $(, $args:tt)*) => {{
777 trait StaticAssert {
778 const ASSERT: bool;
779 }
780
781 impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?,)*> StaticAssert for ($($tyvar,)*) {
782 const ASSERT: bool = {
783 const_assert!($condition $(, $args)*);
784 $condition
785 };
786 }
787
788 const_assert!(<($($tyvar,)*) as StaticAssert>::ASSERT);
789 }};
790}
791
792/// Assert at compile time that `tyvar` does not have a zero-sized DST
793/// component.
794macro_rules! static_assert_dst_is_not_zst {
795 ($tyvar:ident) => {{
796 use crate::KnownLayout;
797 static_assert!($tyvar: ?Sized + KnownLayout => {
798 let dst_is_zst = match $tyvar::LAYOUT.size_info {
799 crate::SizeInfo::Sized { .. } => false,
800 crate::SizeInfo::SliceDst(TrailingSliceLayout { elem_size, .. }) => {
801 elem_size == 0
802 }
803 };
804 !dst_is_zst
805 }, "cannot call this method on a dynamically-sized type whose trailing slice element is zero-sized");
806 }}
807}