zerocopy/
wrappers.rs

1// Copyright 2023 The Fuchsia Authors
2//
3// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6// This file may not be copied, modified, or distributed except according to
7// those terms.
8
9use core::{fmt, hash::Hash};
10
11use super::*;
12
13/// A type with no alignment requirement.
14///
15/// An `Unalign` wraps a `T`, removing any alignment requirement. `Unalign<T>`
16/// has the same size and bit validity as `T`, but not necessarily the same
17/// alignment [or ABI]. This is useful if a type with an alignment requirement
18/// needs to be read from a chunk of memory which provides no alignment
19/// guarantees.
20///
21/// Since `Unalign` has no alignment requirement, the inner `T` may not be
22/// properly aligned in memory. There are five ways to access the inner `T`:
23/// - by value, using [`get`] or [`into_inner`]
24/// - by reference inside of a callback, using [`update`]
25/// - fallibly by reference, using [`try_deref`] or [`try_deref_mut`]; these can
26///   fail if the `Unalign` does not satisfy `T`'s alignment requirement at
27///   runtime
28/// - unsafely by reference, using [`deref_unchecked`] or
29///   [`deref_mut_unchecked`]; it is the caller's responsibility to ensure that
30///   the `Unalign` satisfies `T`'s alignment requirement
31/// - (where `T: Unaligned`) infallibly by reference, using [`Deref::deref`] or
32///   [`DerefMut::deref_mut`]
33///
34/// [or ABI]: https://github.com/google/zerocopy/issues/164
35/// [`get`]: Unalign::get
36/// [`into_inner`]: Unalign::into_inner
37/// [`update`]: Unalign::update
38/// [`try_deref`]: Unalign::try_deref
39/// [`try_deref_mut`]: Unalign::try_deref_mut
40/// [`deref_unchecked`]: Unalign::deref_unchecked
41/// [`deref_mut_unchecked`]: Unalign::deref_mut_unchecked
42///
43/// # Example
44///
45/// In this example, we need `EthernetFrame` to have no alignment requirement -
46/// and thus implement [`Unaligned`]. `EtherType` is `#[repr(u16)]` and so
47/// cannot implement `Unaligned`. We use `Unalign` to relax `EtherType`'s
48/// alignment requirement so that `EthernetFrame` has no alignment requirement
49/// and can implement `Unaligned`.
50///
51/// ```rust
52/// use zerocopy::*;
53/// # use zerocopy_derive::*;
54/// # #[derive(FromBytes, KnownLayout, Immutable, Unaligned)] #[repr(C)] struct Mac([u8; 6]);
55///
56/// # #[derive(PartialEq, Copy, Clone, Debug)]
57/// #[derive(TryFromBytes, KnownLayout, Immutable)]
58/// #[repr(u16)]
59/// enum EtherType {
60///     Ipv4 = 0x0800u16.to_be(),
61///     Arp = 0x0806u16.to_be(),
62///     Ipv6 = 0x86DDu16.to_be(),
63///     # /*
64///     ...
65///     # */
66/// }
67///
68/// #[derive(TryFromBytes, KnownLayout, Immutable, Unaligned)]
69/// #[repr(C)]
70/// struct EthernetFrame {
71///     src: Mac,
72///     dst: Mac,
73///     ethertype: Unalign<EtherType>,
74///     payload: [u8],
75/// }
76///
77/// let bytes = &[
78///     # 0, 1, 2, 3, 4, 5,
79///     # 6, 7, 8, 9, 10, 11,
80///     # /*
81///     ...
82///     # */
83///     0x86, 0xDD,            // EtherType
84///     0xDE, 0xAD, 0xBE, 0xEF // Payload
85/// ][..];
86///
87/// // PANICS: Guaranteed not to panic because `bytes` is of the right
88/// // length, has the right contents, and `EthernetFrame` has no
89/// // alignment requirement.
90/// let packet = EthernetFrame::try_ref_from_bytes(&bytes).unwrap();
91///
92/// assert_eq!(packet.ethertype.get(), EtherType::Ipv6);
93/// assert_eq!(packet.payload, [0xDE, 0xAD, 0xBE, 0xEF]);
94/// ```
95///
96/// # Safety
97///
98/// `Unalign<T>` is guaranteed to have the same size and bit validity as `T`,
99/// and to have [`UnsafeCell`]s covering the same byte ranges as `T`.
100/// `Unalign<T>` is guaranteed to have alignment 1.
101// NOTE: This type is sound to use with types that need to be dropped. The
102// reason is that the compiler-generated drop code automatically moves all
103// values to aligned memory slots before dropping them in-place. This is not
104// well-documented, but it's hinted at in places like [1] and [2]. However, this
105// also means that `T` must be `Sized`; unless something changes, we can never
106// support unsized `T`. [3]
107//
108// [1] https://github.com/rust-lang/rust/issues/54148#issuecomment-420529646
109// [2] https://github.com/google/zerocopy/pull/126#discussion_r1018512323
110// [3] https://github.com/google/zerocopy/issues/209
111#[allow(missing_debug_implementations)]
112#[derive(Default, Copy)]
113#[cfg_attr(any(feature = "derive", test), derive(Immutable, FromBytes, IntoBytes, Unaligned))]
114#[repr(C, packed)]
115pub struct Unalign<T>(T);
116
117// We do not use `derive(KnownLayout)` on `Unalign`, because the derive is not
118// smart enough to realize that `Unalign<T>` is always sized and thus emits a
119// `KnownLayout` impl bounded on `T: KnownLayout.` This is overly restrictive.
120impl_known_layout!(T => Unalign<T>);
121
122safety_comment! {
123    /// SAFETY:
124    /// - `Unalign<T>` promises to have alignment 1, and so we don't require
125    ///   that `T: Unaligned`.
126    /// - `Unalign<T>` has the same bit validity as `T`, and so it is
127    ///   `FromZeros`, `FromBytes`, or `IntoBytes` exactly when `T` is as well.
128    /// - `Immutable`: `Unalign<T>` has the same fields as `T`, so it contains
129    ///   `UnsafeCell`s exactly when `T` does.
130    /// - `TryFromBytes`: `Unalign<T>` has the same the same bit validity as
131    ///   `T`, so `T::is_bit_valid` is a sound implementation of `is_bit_valid`.
132    ///   Furthermore:
133    ///   - Since `T` and `Unalign<T>` have the same layout, they have the same
134    ///     size (as required by `unsafe_impl!`).
135    ///   - Since `T` and `Unalign<T>` have the same fields, they have
136    ///     `UnsafeCell`s at the same byte ranges (as required by
137    ///     `unsafe_impl!`).
138    impl_or_verify!(T => Unaligned for Unalign<T>);
139    impl_or_verify!(T: Immutable => Immutable for Unalign<T>);
140    impl_or_verify!(
141        T: TryFromBytes => TryFromBytes for Unalign<T>;
142        |c: Maybe<T>| T::is_bit_valid(c)
143    );
144    impl_or_verify!(T: FromZeros => FromZeros for Unalign<T>);
145    impl_or_verify!(T: FromBytes => FromBytes for Unalign<T>);
146    impl_or_verify!(T: IntoBytes => IntoBytes for Unalign<T>);
147}
148
149// Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be
150// aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound
151// is not sufficient to implement `Clone` for `Unalign`.
152impl<T: Copy> Clone for Unalign<T> {
153    #[inline(always)]
154    fn clone(&self) -> Unalign<T> {
155        *self
156    }
157}
158
159impl<T> Unalign<T> {
160    /// Constructs a new `Unalign`.
161    #[inline(always)]
162    pub const fn new(val: T) -> Unalign<T> {
163        Unalign(val)
164    }
165
166    /// Consumes `self`, returning the inner `T`.
167    #[inline(always)]
168    pub const fn into_inner(self) -> T {
169        // SAFETY: Since `Unalign` is `#[repr(C, packed)]`, it has the same size
170        // and bit validity as `T`.
171        //
172        // We do this instead of just destructuring in order to prevent
173        // `Unalign`'s `Drop::drop` from being run, since dropping is not
174        // supported in `const fn`s.
175        //
176        // TODO(https://github.com/rust-lang/rust/issues/73255): Destructure
177        // instead of using unsafe.
178        unsafe { crate::util::transmute_unchecked(self) }
179    }
180
181    /// Attempts to return a reference to the wrapped `T`, failing if `self` is
182    /// not properly aligned.
183    ///
184    /// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns
185    /// `Err`.
186    ///
187    /// If `T: Unaligned`, then `Unalign<T>` implements [`Deref`], and callers
188    /// may prefer [`Deref::deref`], which is infallible.
189    #[inline(always)]
190    pub fn try_deref(&self) -> Result<&T, AlignmentError<&Self, T>> {
191        let inner = Ptr::from_ref(self).transparent_wrapper_into_inner();
192        match inner.bikeshed_try_into_aligned() {
193            Ok(aligned) => Ok(aligned.as_ref()),
194            Err(err) => Err(err.map_src(|src| src.into_unalign().as_ref())),
195        }
196    }
197
198    /// Attempts to return a mutable reference to the wrapped `T`, failing if
199    /// `self` is not properly aligned.
200    ///
201    /// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns
202    /// `Err`.
203    ///
204    /// If `T: Unaligned`, then `Unalign<T>` implements [`DerefMut`], and
205    /// callers may prefer [`DerefMut::deref_mut`], which is infallible.
206    #[inline(always)]
207    pub fn try_deref_mut(&mut self) -> Result<&mut T, AlignmentError<&mut Self, T>> {
208        let inner = Ptr::from_mut(self).transparent_wrapper_into_inner();
209        match inner.bikeshed_try_into_aligned() {
210            Ok(aligned) => Ok(aligned.as_mut()),
211            Err(err) => Err(err.map_src(|src| src.into_unalign().as_mut())),
212        }
213    }
214
215    /// Returns a reference to the wrapped `T` without checking alignment.
216    ///
217    /// If `T: Unaligned`, then `Unalign<T>` implements[ `Deref`], and callers
218    /// may prefer [`Deref::deref`], which is safe.
219    ///
220    /// # Safety
221    ///
222    /// The caller must guarantee that `self` satisfies `align_of::<T>()`.
223    #[inline(always)]
224    pub const unsafe fn deref_unchecked(&self) -> &T {
225        // SAFETY: `Unalign<T>` is `repr(transparent)`, so there is a valid `T`
226        // at the same memory location as `self`. It has no alignment guarantee,
227        // but the caller has promised that `self` is properly aligned, so we
228        // know that it is sound to create a reference to `T` at this memory
229        // location.
230        //
231        // We use `mem::transmute` instead of `&*self.get_ptr()` because
232        // dereferencing pointers is not stable in `const` on our current MSRV
233        // (1.56 as of this writing).
234        unsafe { mem::transmute(self) }
235    }
236
237    /// Returns a mutable reference to the wrapped `T` without checking
238    /// alignment.
239    ///
240    /// If `T: Unaligned`, then `Unalign<T>` implements[ `DerefMut`], and
241    /// callers may prefer [`DerefMut::deref_mut`], which is safe.
242    ///
243    /// # Safety
244    ///
245    /// The caller must guarantee that `self` satisfies `align_of::<T>()`.
246    #[inline(always)]
247    pub unsafe fn deref_mut_unchecked(&mut self) -> &mut T {
248        // SAFETY: `self.get_mut_ptr()` returns a raw pointer to a valid `T` at
249        // the same memory location as `self`. It has no alignment guarantee,
250        // but the caller has promised that `self` is properly aligned, so we
251        // know that the pointer itself is aligned, and thus that it is sound to
252        // create a reference to a `T` at this memory location.
253        unsafe { &mut *self.get_mut_ptr() }
254    }
255
256    /// Gets an unaligned raw pointer to the inner `T`.
257    ///
258    /// # Safety
259    ///
260    /// The returned raw pointer is not necessarily aligned to
261    /// `align_of::<T>()`. Most functions which operate on raw pointers require
262    /// those pointers to be aligned, so calling those functions with the result
263    /// of `get_ptr` will result in undefined behavior if alignment is not
264    /// guaranteed using some out-of-band mechanism. In general, the only
265    /// functions which are safe to call with this pointer are those which are
266    /// explicitly documented as being sound to use with an unaligned pointer,
267    /// such as [`read_unaligned`].
268    ///
269    /// Even if the caller is permitted to mutate `self` (e.g. they have
270    /// ownership or a mutable borrow), it is not guaranteed to be sound to
271    /// write through the returned pointer. If writing is required, prefer
272    /// [`get_mut_ptr`] instead.
273    ///
274    /// [`read_unaligned`]: core::ptr::read_unaligned
275    /// [`get_mut_ptr`]: Unalign::get_mut_ptr
276    #[inline(always)]
277    pub const fn get_ptr(&self) -> *const T {
278        ptr::addr_of!(self.0)
279    }
280
281    /// Gets an unaligned mutable raw pointer to the inner `T`.
282    ///
283    /// # Safety
284    ///
285    /// The returned raw pointer is not necessarily aligned to
286    /// `align_of::<T>()`. Most functions which operate on raw pointers require
287    /// those pointers to be aligned, so calling those functions with the result
288    /// of `get_ptr` will result in undefined behavior if alignment is not
289    /// guaranteed using some out-of-band mechanism. In general, the only
290    /// functions which are safe to call with this pointer are those which are
291    /// explicitly documented as being sound to use with an unaligned pointer,
292    /// such as [`read_unaligned`].
293    ///
294    /// [`read_unaligned`]: core::ptr::read_unaligned
295    // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
296    #[inline(always)]
297    pub fn get_mut_ptr(&mut self) -> *mut T {
298        ptr::addr_of_mut!(self.0)
299    }
300
301    /// Sets the inner `T`, dropping the previous value.
302    // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
303    #[inline(always)]
304    pub fn set(&mut self, t: T) {
305        *self = Unalign::new(t);
306    }
307
308    /// Updates the inner `T` by calling a function on it.
309    ///
310    /// If [`T: Unaligned`], then `Unalign<T>` implements [`DerefMut`], and that
311    /// impl should be preferred over this method when performing updates, as it
312    /// will usually be faster and more ergonomic.
313    ///
314    /// For large types, this method may be expensive, as it requires copying
315    /// `2 * size_of::<T>()` bytes. \[1\]
316    ///
317    /// \[1\] Since the inner `T` may not be aligned, it would not be sound to
318    /// invoke `f` on it directly. Instead, `update` moves it into a
319    /// properly-aligned location in the local stack frame, calls `f` on it, and
320    /// then moves it back to its original location in `self`.
321    ///
322    /// [`T: Unaligned`]: Unaligned
323    #[inline]
324    pub fn update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O {
325        if mem::align_of::<T>() == 1 {
326            // While we advise callers to use `DerefMut` when `T: Unaligned`,
327            // not all callers will be able to guarantee `T: Unaligned` in all
328            // cases. In particular, callers who are themselves providing an API
329            // which is generic over `T` may sometimes be called by *their*
330            // callers with `T` such that `align_of::<T>() == 1`, but cannot
331            // guarantee this in the general case. Thus, this optimization may
332            // sometimes be helpful.
333
334            // SAFETY: Since `T`'s alignment is 1, `self` satisfies its
335            // alignment by definition.
336            let t = unsafe { self.deref_mut_unchecked() };
337            return f(t);
338        }
339
340        // On drop, this moves `copy` out of itself and uses `ptr::write` to
341        // overwrite `slf`.
342        struct WriteBackOnDrop<T> {
343            copy: ManuallyDrop<T>,
344            slf: *mut Unalign<T>,
345        }
346
347        impl<T> Drop for WriteBackOnDrop<T> {
348            fn drop(&mut self) {
349                // SAFETY: We never use `copy` again as required by
350                // `ManuallyDrop::take`.
351                let copy = unsafe { ManuallyDrop::take(&mut self.copy) };
352                // SAFETY: `slf` is the raw pointer value of `self`. We know it
353                // is valid for writes and properly aligned because `self` is a
354                // mutable reference, which guarantees both of these properties.
355                unsafe { ptr::write(self.slf, Unalign::new(copy)) };
356            }
357        }
358
359        // SAFETY: We know that `self` is valid for reads, properly aligned, and
360        // points to an initialized `Unalign<T>` because it is a mutable
361        // reference, which guarantees all of these properties.
362        //
363        // Since `T: !Copy`, it would be unsound in the general case to allow
364        // both the original `Unalign<T>` and the copy to be used by safe code.
365        // We guarantee that the copy is used to overwrite the original in the
366        // `Drop::drop` impl of `WriteBackOnDrop`. So long as this `drop` is
367        // called before any other safe code executes, soundness is upheld.
368        // While this method can terminate in two ways (by returning normally or
369        // by unwinding due to a panic in `f`), in both cases, `write_back` is
370        // dropped - and its `drop` called - before any other safe code can
371        // execute.
372        let copy = unsafe { ptr::read(self) }.into_inner();
373        let mut write_back = WriteBackOnDrop { copy: ManuallyDrop::new(copy), slf: self };
374
375        let ret = f(&mut write_back.copy);
376
377        drop(write_back);
378        ret
379    }
380}
381
382impl<T: Copy> Unalign<T> {
383    /// Gets a copy of the inner `T`.
384    // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
385    #[inline(always)]
386    pub fn get(&self) -> T {
387        let Unalign(val) = *self;
388        val
389    }
390}
391
392impl<T: Unaligned> Deref for Unalign<T> {
393    type Target = T;
394
395    #[inline(always)]
396    fn deref(&self) -> &T {
397        Ptr::from_ref(self).transparent_wrapper_into_inner().bikeshed_recall_aligned().as_ref()
398    }
399}
400
401impl<T: Unaligned> DerefMut for Unalign<T> {
402    #[inline(always)]
403    fn deref_mut(&mut self) -> &mut T {
404        Ptr::from_mut(self).transparent_wrapper_into_inner().bikeshed_recall_aligned().as_mut()
405    }
406}
407
408impl<T: Unaligned + PartialOrd> PartialOrd<Unalign<T>> for Unalign<T> {
409    #[inline(always)]
410    fn partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering> {
411        PartialOrd::partial_cmp(self.deref(), other.deref())
412    }
413}
414
415impl<T: Unaligned + Ord> Ord for Unalign<T> {
416    #[inline(always)]
417    fn cmp(&self, other: &Unalign<T>) -> Ordering {
418        Ord::cmp(self.deref(), other.deref())
419    }
420}
421
422impl<T: Unaligned + PartialEq> PartialEq<Unalign<T>> for Unalign<T> {
423    #[inline(always)]
424    fn eq(&self, other: &Unalign<T>) -> bool {
425        PartialEq::eq(self.deref(), other.deref())
426    }
427}
428
429impl<T: Unaligned + Eq> Eq for Unalign<T> {}
430
431impl<T: Unaligned + Hash> Hash for Unalign<T> {
432    #[inline(always)]
433    fn hash<H>(&self, state: &mut H)
434    where
435        H: Hasher,
436    {
437        self.deref().hash(state);
438    }
439}
440
441impl<T: Unaligned + Debug> Debug for Unalign<T> {
442    #[inline(always)]
443    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
444        Debug::fmt(self.deref(), f)
445    }
446}
447
448impl<T: Unaligned + Display> Display for Unalign<T> {
449    #[inline(always)]
450    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
451        Display::fmt(self.deref(), f)
452    }
453}
454
455/// A wrapper type to construct uninitialized instances of `T`.
456///
457/// `MaybeUninit` is identical to the [standard library
458/// `MaybeUninit`][core-maybe-uninit] type except that it supports unsized
459/// types.
460///
461/// # Layout
462///
463/// The same layout guarantees and caveats apply to `MaybeUninit<T>` as apply to
464/// the [standard library `MaybeUninit`][core-maybe-uninit] with one exception:
465/// for `T: !Sized`, there is no single value for `T`'s size. Instead, for such
466/// types, the following are guaranteed:
467/// - Every [valid size][valid-size] for `T` is a valid size for
468///   `MaybeUninit<T>` and vice versa
469/// - Given `t: *const T` and `m: *const MaybeUninit<T>` with identical fat
470///   pointer metadata, `t` and `m` address the same number of bytes (and
471///   likewise for `*mut`)
472///
473/// [core-maybe-uninit]: core::mem::MaybeUninit
474/// [valid-size]: crate::KnownLayout#what-is-a-valid-size
475#[repr(transparent)]
476#[doc(hidden)]
477pub struct MaybeUninit<T: ?Sized + KnownLayout>(
478    // SAFETY: `MaybeUninit<T>` has the same size as `T`, because (by invariant
479    // on `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`,
480    // and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT`
481    // accurately reflects the layout of `T`. By invariant on `T::MaybeUninit`,
482    // it admits uninitialized bytes in all positions. Because `MabyeUninit` is
483    // marked `repr(transparent)`, these properties additionally hold true for
484    // `Self`.
485    T::MaybeUninit,
486);
487
488#[doc(hidden)]
489impl<T: ?Sized + KnownLayout> MaybeUninit<T> {
490    /// Constructs a `MaybeUninit<T>` initialized with the given value.
491    #[inline(always)]
492    pub fn new(val: T) -> Self
493    where
494        T: Sized,
495        Self: Sized,
496    {
497        // SAFETY: It is valid to transmute `val` to `MaybeUninit<T>` because it
498        // is both valid to transmute `val` to `T::MaybeUninit`, and it is valid
499        // to transmute from `T::MaybeUninit` to `MaybeUninit<T>`.
500        //
501        // First, it is valid to transmute `val` to `T::MaybeUninit` because, by
502        // invariant on `T::MaybeUninit`:
503        // - For `T: Sized`, `T` and `T::MaybeUninit` have the same size.
504        // - All byte sequences of the correct size are valid values of
505        //   `T::MaybeUninit`.
506        //
507        // Second, it is additionally valid to transmute from `T::MaybeUninit`
508        // to `MaybeUninit<T>`, because `MaybeUninit<T>` is a
509        // `repr(transparent)` wrapper around `T::MaybeUninit`.
510        //
511        // These two transmutes are collapsed into one so we don't need to add a
512        // `T::MaybeUninit: Sized` bound to this function's `where` clause.
513        unsafe { crate::util::transmute_unchecked(val) }
514    }
515
516    /// Constructs an uninitialized `MaybeUninit<T>`.
517    #[must_use]
518    #[inline(always)]
519    pub fn uninit() -> Self
520    where
521        T: Sized,
522        Self: Sized,
523    {
524        let uninit = CoreMaybeUninit::<T>::uninit();
525        // SAFETY: It is valid to transmute from `CoreMaybeUninit<T>` to
526        // `MaybeUninit<T>` since they both admit uninitialized bytes in all
527        // positions, and they have the same size (i.e., that of `T`).
528        //
529        // `MaybeUninit<T>` has the same size as `T`, because (by invariant on
530        // `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`,
531        // and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT`
532        // accurately reflects the layout of `T`.
533        //
534        // `CoreMaybeUninit<T>` has the same size as `T` [1] and admits
535        // uninitialized bytes in all positions.
536        //
537        // [1] Per https://doc.rust-lang.org/1.81.0/std/mem/union.MaybeUninit.html#layout-1:
538        //
539        //   `MaybeUninit<T>` is guaranteed to have the same size, alignment,
540        //   and ABI as `T`
541        unsafe { crate::util::transmute_unchecked(uninit) }
542    }
543
544    /// Creates a `Box<MaybeUninit<T>>`.
545    ///
546    /// This function is useful for allocating large, uninit values on the heap
547    /// without ever creating a temporary instance of `Self` on the stack.
548    ///
549    /// # Errors
550    ///
551    /// Returns an error on allocation failure. Allocation failure is guaranteed
552    /// never to cause a panic or an abort.
553    #[cfg(feature = "alloc")]
554    #[inline]
555    pub fn new_boxed_uninit(meta: T::PointerMetadata) -> Result<Box<Self>, AllocError> {
556        // SAFETY: `alloc::alloc::alloc_zeroed` is a valid argument of
557        // `new_box`. The referent of the pointer returned by `alloc` (and,
558        // consequently, the `Box` derived from it) is a valid instance of
559        // `Self`, because `Self` is `MaybeUninit` and thus admits arbitrary
560        // (un)initialized bytes.
561        unsafe { crate::util::new_box(meta, alloc::alloc::alloc) }
562    }
563
564    /// Extracts the value from the `MaybeUninit<T>` container.
565    ///
566    /// # Safety
567    ///
568    /// The caller must ensure that `self` is in an bit-valid state. Depending
569    /// on subsequent use, it may also need to be in a library-valid state.
570    #[inline(always)]
571    pub unsafe fn assume_init(self) -> T
572    where
573        T: Sized,
574        Self: Sized,
575    {
576        // SAFETY: The caller guarantees that `self` is in an bit-valid state.
577        unsafe { crate::util::transmute_unchecked(self) }
578    }
579}
580
581impl<T: ?Sized + KnownLayout> fmt::Debug for MaybeUninit<T> {
582    #[inline]
583    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
584        f.pad(core::any::type_name::<Self>())
585    }
586}
587
588#[cfg(test)]
589mod tests {
590    use core::panic::AssertUnwindSafe;
591
592    use super::*;
593    use crate::util::testutil::*;
594
595    #[test]
596    fn test_unalign() {
597        // Test methods that don't depend on alignment.
598        let mut u = Unalign::new(AU64(123));
599        assert_eq!(u.get(), AU64(123));
600        assert_eq!(u.into_inner(), AU64(123));
601        assert_eq!(u.get_ptr(), <*const _>::cast::<AU64>(&u));
602        assert_eq!(u.get_mut_ptr(), <*mut _>::cast::<AU64>(&mut u));
603        u.set(AU64(321));
604        assert_eq!(u.get(), AU64(321));
605
606        // Test methods that depend on alignment (when alignment is satisfied).
607        let mut u: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
608        assert_eq!(u.t.try_deref().unwrap(), &AU64(123));
609        assert_eq!(u.t.try_deref_mut().unwrap(), &mut AU64(123));
610        // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
611        assert_eq!(unsafe { u.t.deref_unchecked() }, &AU64(123));
612        // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
613        assert_eq!(unsafe { u.t.deref_mut_unchecked() }, &mut AU64(123));
614        *u.t.try_deref_mut().unwrap() = AU64(321);
615        assert_eq!(u.t.get(), AU64(321));
616
617        // Test methods that depend on alignment (when alignment is not
618        // satisfied).
619        let mut u: ForceUnalign<_, AU64> = ForceUnalign::new(Unalign::new(AU64(123)));
620        assert!(matches!(u.t.try_deref(), Err(AlignmentError { .. })));
621        assert!(matches!(u.t.try_deref_mut(), Err(AlignmentError { .. })));
622
623        // Test methods that depend on `T: Unaligned`.
624        let mut u = Unalign::new(123u8);
625        assert_eq!(u.try_deref(), Ok(&123));
626        assert_eq!(u.try_deref_mut(), Ok(&mut 123));
627        assert_eq!(u.deref(), &123);
628        assert_eq!(u.deref_mut(), &mut 123);
629        *u = 21;
630        assert_eq!(u.get(), 21);
631
632        // Test that some `Unalign` functions and methods are `const`.
633        const _UNALIGN: Unalign<u64> = Unalign::new(0);
634        const _UNALIGN_PTR: *const u64 = _UNALIGN.get_ptr();
635        const _U64: u64 = _UNALIGN.into_inner();
636        // Make sure all code is considered "used".
637        //
638        // TODO(https://github.com/rust-lang/rust/issues/104084): Remove this
639        // attribute.
640        #[allow(dead_code)]
641        const _: () = {
642            let x: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
643            // Make sure that `deref_unchecked` is `const`.
644            //
645            // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
646            let au64 = unsafe { x.t.deref_unchecked() };
647            match au64 {
648                AU64(123) => {}
649                _ => const_unreachable!(),
650            }
651        };
652    }
653
654    #[test]
655    fn test_unalign_update() {
656        let mut u = Unalign::new(AU64(123));
657        u.update(|a| a.0 += 1);
658        assert_eq!(u.get(), AU64(124));
659
660        // Test that, even if the callback panics, the original is still
661        // correctly overwritten. Use a `Box` so that Miri is more likely to
662        // catch any unsoundness (which would likely result in two `Box`es for
663        // the same heap object, which is the sort of thing that Miri would
664        // probably catch).
665        let mut u = Unalign::new(Box::new(AU64(123)));
666        let res = std::panic::catch_unwind(AssertUnwindSafe(|| {
667            u.update(|a| {
668                a.0 += 1;
669                panic!();
670            })
671        }));
672        assert!(res.is_err());
673        assert_eq!(u.into_inner(), Box::new(AU64(124)));
674
675        // Test the align_of::<T>() == 1 optimization.
676        let mut u = Unalign::new([0u8, 1]);
677        u.update(|a| a[0] += 1);
678        assert_eq!(u.get(), [1u8, 1]);
679    }
680
681    #[test]
682    fn test_unalign_copy_clone() {
683        // Test that `Copy` and `Clone` do not cause soundness issues. This test
684        // is mainly meant to exercise UB that would be caught by Miri.
685
686        // `u.t` is definitely not validly-aligned for `AU64`'s alignment of 8.
687        let u = ForceUnalign::<_, AU64>::new(Unalign::new(AU64(123)));
688        #[allow(clippy::clone_on_copy)]
689        let v = u.t.clone();
690        let w = u.t;
691        assert_eq!(u.t.get(), v.get());
692        assert_eq!(u.t.get(), w.get());
693        assert_eq!(v.get(), w.get());
694    }
695
696    #[test]
697    fn test_unalign_trait_impls() {
698        let zero = Unalign::new(0u8);
699        let one = Unalign::new(1u8);
700
701        assert!(zero < one);
702        assert_eq!(PartialOrd::partial_cmp(&zero, &one), Some(Ordering::Less));
703        assert_eq!(Ord::cmp(&zero, &one), Ordering::Less);
704
705        assert_ne!(zero, one);
706        assert_eq!(zero, zero);
707        assert!(!PartialEq::eq(&zero, &one));
708        assert!(PartialEq::eq(&zero, &zero));
709
710        fn hash<T: Hash>(t: &T) -> u64 {
711            let mut h = std::collections::hash_map::DefaultHasher::new();
712            t.hash(&mut h);
713            h.finish()
714        }
715
716        assert_eq!(hash(&zero), hash(&0u8));
717        assert_eq!(hash(&one), hash(&1u8));
718
719        assert_eq!(format!("{:?}", zero), format!("{:?}", 0u8));
720        assert_eq!(format!("{:?}", one), format!("{:?}", 1u8));
721        assert_eq!(format!("{}", zero), format!("{}", 0u8));
722        assert_eq!(format!("{}", one), format!("{}", 1u8));
723    }
724
725    #[test]
726    #[allow(clippy::as_conversions)]
727    fn test_maybe_uninit() {
728        // int
729        {
730            let input = 42;
731            let uninit = MaybeUninit::new(input);
732            // SAFETY: `uninit` is in an initialized state
733            let output = unsafe { uninit.assume_init() };
734            assert_eq!(input, output);
735        }
736
737        // thin ref
738        {
739            let input = 42;
740            let uninit = MaybeUninit::new(&input);
741            // SAFETY: `uninit` is in an initialized state
742            let output = unsafe { uninit.assume_init() };
743            assert_eq!(&input as *const _, output as *const _);
744            assert_eq!(input, *output);
745        }
746
747        // wide ref
748        {
749            let input = [1, 2, 3, 4];
750            let uninit = MaybeUninit::new(&input[..]);
751            // SAFETY: `uninit` is in an initialized state
752            let output = unsafe { uninit.assume_init() };
753            assert_eq!(&input[..] as *const _, output as *const _);
754            assert_eq!(input, *output);
755        }
756    }
757}