zerocopy/wrappers.rs
1// Copyright 2023 The Fuchsia Authors
2//
3// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6// This file may not be copied, modified, or distributed except according to
7// those terms.
8
9use core::{fmt, hash::Hash};
10
11use super::*;
12
13/// A type with no alignment requirement.
14///
15/// An `Unalign` wraps a `T`, removing any alignment requirement. `Unalign<T>`
16/// has the same size and bit validity as `T`, but not necessarily the same
17/// alignment [or ABI]. This is useful if a type with an alignment requirement
18/// needs to be read from a chunk of memory which provides no alignment
19/// guarantees.
20///
21/// Since `Unalign` has no alignment requirement, the inner `T` may not be
22/// properly aligned in memory. There are five ways to access the inner `T`:
23/// - by value, using [`get`] or [`into_inner`]
24/// - by reference inside of a callback, using [`update`]
25/// - fallibly by reference, using [`try_deref`] or [`try_deref_mut`]; these can
26/// fail if the `Unalign` does not satisfy `T`'s alignment requirement at
27/// runtime
28/// - unsafely by reference, using [`deref_unchecked`] or
29/// [`deref_mut_unchecked`]; it is the caller's responsibility to ensure that
30/// the `Unalign` satisfies `T`'s alignment requirement
31/// - (where `T: Unaligned`) infallibly by reference, using [`Deref::deref`] or
32/// [`DerefMut::deref_mut`]
33///
34/// [or ABI]: https://github.com/google/zerocopy/issues/164
35/// [`get`]: Unalign::get
36/// [`into_inner`]: Unalign::into_inner
37/// [`update`]: Unalign::update
38/// [`try_deref`]: Unalign::try_deref
39/// [`try_deref_mut`]: Unalign::try_deref_mut
40/// [`deref_unchecked`]: Unalign::deref_unchecked
41/// [`deref_mut_unchecked`]: Unalign::deref_mut_unchecked
42///
43/// # Example
44///
45/// In this example, we need `EthernetFrame` to have no alignment requirement -
46/// and thus implement [`Unaligned`]. `EtherType` is `#[repr(u16)]` and so
47/// cannot implement `Unaligned`. We use `Unalign` to relax `EtherType`'s
48/// alignment requirement so that `EthernetFrame` has no alignment requirement
49/// and can implement `Unaligned`.
50///
51/// ```rust
52/// use zerocopy::*;
53/// # use zerocopy_derive::*;
54/// # #[derive(FromBytes, KnownLayout, Immutable, Unaligned)] #[repr(C)] struct Mac([u8; 6]);
55///
56/// # #[derive(PartialEq, Copy, Clone, Debug)]
57/// #[derive(TryFromBytes, KnownLayout, Immutable)]
58/// #[repr(u16)]
59/// enum EtherType {
60/// Ipv4 = 0x0800u16.to_be(),
61/// Arp = 0x0806u16.to_be(),
62/// Ipv6 = 0x86DDu16.to_be(),
63/// # /*
64/// ...
65/// # */
66/// }
67///
68/// #[derive(TryFromBytes, KnownLayout, Immutable, Unaligned)]
69/// #[repr(C)]
70/// struct EthernetFrame {
71/// src: Mac,
72/// dst: Mac,
73/// ethertype: Unalign<EtherType>,
74/// payload: [u8],
75/// }
76///
77/// let bytes = &[
78/// # 0, 1, 2, 3, 4, 5,
79/// # 6, 7, 8, 9, 10, 11,
80/// # /*
81/// ...
82/// # */
83/// 0x86, 0xDD, // EtherType
84/// 0xDE, 0xAD, 0xBE, 0xEF // Payload
85/// ][..];
86///
87/// // PANICS: Guaranteed not to panic because `bytes` is of the right
88/// // length, has the right contents, and `EthernetFrame` has no
89/// // alignment requirement.
90/// let packet = EthernetFrame::try_ref_from_bytes(&bytes).unwrap();
91///
92/// assert_eq!(packet.ethertype.get(), EtherType::Ipv6);
93/// assert_eq!(packet.payload, [0xDE, 0xAD, 0xBE, 0xEF]);
94/// ```
95///
96/// # Safety
97///
98/// `Unalign<T>` is guaranteed to have the same size and bit validity as `T`,
99/// and to have [`UnsafeCell`]s covering the same byte ranges as `T`.
100/// `Unalign<T>` is guaranteed to have alignment 1.
101// NOTE: This type is sound to use with types that need to be dropped. The
102// reason is that the compiler-generated drop code automatically moves all
103// values to aligned memory slots before dropping them in-place. This is not
104// well-documented, but it's hinted at in places like [1] and [2]. However, this
105// also means that `T` must be `Sized`; unless something changes, we can never
106// support unsized `T`. [3]
107//
108// [1] https://github.com/rust-lang/rust/issues/54148#issuecomment-420529646
109// [2] https://github.com/google/zerocopy/pull/126#discussion_r1018512323
110// [3] https://github.com/google/zerocopy/issues/209
111#[allow(missing_debug_implementations)]
112#[derive(Default, Copy)]
113#[cfg_attr(any(feature = "derive", test), derive(Immutable, FromBytes, IntoBytes, Unaligned))]
114#[repr(C, packed)]
115pub struct Unalign<T>(T);
116
117// We do not use `derive(KnownLayout)` on `Unalign`, because the derive is not
118// smart enough to realize that `Unalign<T>` is always sized and thus emits a
119// `KnownLayout` impl bounded on `T: KnownLayout.` This is overly restrictive.
120impl_known_layout!(T => Unalign<T>);
121
122safety_comment! {
123 /// SAFETY:
124 /// - `Unalign<T>` promises to have alignment 1, and so we don't require
125 /// that `T: Unaligned`.
126 /// - `Unalign<T>` has the same bit validity as `T`, and so it is
127 /// `FromZeros`, `FromBytes`, or `IntoBytes` exactly when `T` is as well.
128 /// - `Immutable`: `Unalign<T>` has the same fields as `T`, so it contains
129 /// `UnsafeCell`s exactly when `T` does.
130 /// - `TryFromBytes`: `Unalign<T>` has the same the same bit validity as
131 /// `T`, so `T::is_bit_valid` is a sound implementation of `is_bit_valid`.
132 /// Furthermore:
133 /// - Since `T` and `Unalign<T>` have the same layout, they have the same
134 /// size (as required by `unsafe_impl!`).
135 /// - Since `T` and `Unalign<T>` have the same fields, they have
136 /// `UnsafeCell`s at the same byte ranges (as required by
137 /// `unsafe_impl!`).
138 impl_or_verify!(T => Unaligned for Unalign<T>);
139 impl_or_verify!(T: Immutable => Immutable for Unalign<T>);
140 impl_or_verify!(
141 T: TryFromBytes => TryFromBytes for Unalign<T>;
142 |c: Maybe<T>| T::is_bit_valid(c)
143 );
144 impl_or_verify!(T: FromZeros => FromZeros for Unalign<T>);
145 impl_or_verify!(T: FromBytes => FromBytes for Unalign<T>);
146 impl_or_verify!(T: IntoBytes => IntoBytes for Unalign<T>);
147}
148
149// Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be
150// aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound
151// is not sufficient to implement `Clone` for `Unalign`.
152impl<T: Copy> Clone for Unalign<T> {
153 #[inline(always)]
154 fn clone(&self) -> Unalign<T> {
155 *self
156 }
157}
158
159impl<T> Unalign<T> {
160 /// Constructs a new `Unalign`.
161 #[inline(always)]
162 pub const fn new(val: T) -> Unalign<T> {
163 Unalign(val)
164 }
165
166 /// Consumes `self`, returning the inner `T`.
167 #[inline(always)]
168 pub const fn into_inner(self) -> T {
169 // SAFETY: Since `Unalign` is `#[repr(C, packed)]`, it has the same size
170 // and bit validity as `T`.
171 //
172 // We do this instead of just destructuring in order to prevent
173 // `Unalign`'s `Drop::drop` from being run, since dropping is not
174 // supported in `const fn`s.
175 //
176 // TODO(https://github.com/rust-lang/rust/issues/73255): Destructure
177 // instead of using unsafe.
178 unsafe { crate::util::transmute_unchecked(self) }
179 }
180
181 /// Attempts to return a reference to the wrapped `T`, failing if `self` is
182 /// not properly aligned.
183 ///
184 /// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns
185 /// `Err`.
186 ///
187 /// If `T: Unaligned`, then `Unalign<T>` implements [`Deref`], and callers
188 /// may prefer [`Deref::deref`], which is infallible.
189 #[inline(always)]
190 pub fn try_deref(&self) -> Result<&T, AlignmentError<&Self, T>> {
191 let inner = Ptr::from_ref(self).transparent_wrapper_into_inner();
192 match inner.bikeshed_try_into_aligned() {
193 Ok(aligned) => Ok(aligned.as_ref()),
194 Err(err) => Err(err.map_src(|src| src.into_unalign().as_ref())),
195 }
196 }
197
198 /// Attempts to return a mutable reference to the wrapped `T`, failing if
199 /// `self` is not properly aligned.
200 ///
201 /// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns
202 /// `Err`.
203 ///
204 /// If `T: Unaligned`, then `Unalign<T>` implements [`DerefMut`], and
205 /// callers may prefer [`DerefMut::deref_mut`], which is infallible.
206 #[inline(always)]
207 pub fn try_deref_mut(&mut self) -> Result<&mut T, AlignmentError<&mut Self, T>> {
208 let inner = Ptr::from_mut(self).transparent_wrapper_into_inner();
209 match inner.bikeshed_try_into_aligned() {
210 Ok(aligned) => Ok(aligned.as_mut()),
211 Err(err) => Err(err.map_src(|src| src.into_unalign().as_mut())),
212 }
213 }
214
215 /// Returns a reference to the wrapped `T` without checking alignment.
216 ///
217 /// If `T: Unaligned`, then `Unalign<T>` implements[ `Deref`], and callers
218 /// may prefer [`Deref::deref`], which is safe.
219 ///
220 /// # Safety
221 ///
222 /// The caller must guarantee that `self` satisfies `align_of::<T>()`.
223 #[inline(always)]
224 pub const unsafe fn deref_unchecked(&self) -> &T {
225 // SAFETY: `Unalign<T>` is `repr(transparent)`, so there is a valid `T`
226 // at the same memory location as `self`. It has no alignment guarantee,
227 // but the caller has promised that `self` is properly aligned, so we
228 // know that it is sound to create a reference to `T` at this memory
229 // location.
230 //
231 // We use `mem::transmute` instead of `&*self.get_ptr()` because
232 // dereferencing pointers is not stable in `const` on our current MSRV
233 // (1.56 as of this writing).
234 unsafe { mem::transmute(self) }
235 }
236
237 /// Returns a mutable reference to the wrapped `T` without checking
238 /// alignment.
239 ///
240 /// If `T: Unaligned`, then `Unalign<T>` implements[ `DerefMut`], and
241 /// callers may prefer [`DerefMut::deref_mut`], which is safe.
242 ///
243 /// # Safety
244 ///
245 /// The caller must guarantee that `self` satisfies `align_of::<T>()`.
246 #[inline(always)]
247 pub unsafe fn deref_mut_unchecked(&mut self) -> &mut T {
248 // SAFETY: `self.get_mut_ptr()` returns a raw pointer to a valid `T` at
249 // the same memory location as `self`. It has no alignment guarantee,
250 // but the caller has promised that `self` is properly aligned, so we
251 // know that the pointer itself is aligned, and thus that it is sound to
252 // create a reference to a `T` at this memory location.
253 unsafe { &mut *self.get_mut_ptr() }
254 }
255
256 /// Gets an unaligned raw pointer to the inner `T`.
257 ///
258 /// # Safety
259 ///
260 /// The returned raw pointer is not necessarily aligned to
261 /// `align_of::<T>()`. Most functions which operate on raw pointers require
262 /// those pointers to be aligned, so calling those functions with the result
263 /// of `get_ptr` will result in undefined behavior if alignment is not
264 /// guaranteed using some out-of-band mechanism. In general, the only
265 /// functions which are safe to call with this pointer are those which are
266 /// explicitly documented as being sound to use with an unaligned pointer,
267 /// such as [`read_unaligned`].
268 ///
269 /// Even if the caller is permitted to mutate `self` (e.g. they have
270 /// ownership or a mutable borrow), it is not guaranteed to be sound to
271 /// write through the returned pointer. If writing is required, prefer
272 /// [`get_mut_ptr`] instead.
273 ///
274 /// [`read_unaligned`]: core::ptr::read_unaligned
275 /// [`get_mut_ptr`]: Unalign::get_mut_ptr
276 #[inline(always)]
277 pub const fn get_ptr(&self) -> *const T {
278 ptr::addr_of!(self.0)
279 }
280
281 /// Gets an unaligned mutable raw pointer to the inner `T`.
282 ///
283 /// # Safety
284 ///
285 /// The returned raw pointer is not necessarily aligned to
286 /// `align_of::<T>()`. Most functions which operate on raw pointers require
287 /// those pointers to be aligned, so calling those functions with the result
288 /// of `get_ptr` will result in undefined behavior if alignment is not
289 /// guaranteed using some out-of-band mechanism. In general, the only
290 /// functions which are safe to call with this pointer are those which are
291 /// explicitly documented as being sound to use with an unaligned pointer,
292 /// such as [`read_unaligned`].
293 ///
294 /// [`read_unaligned`]: core::ptr::read_unaligned
295 // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
296 #[inline(always)]
297 pub fn get_mut_ptr(&mut self) -> *mut T {
298 ptr::addr_of_mut!(self.0)
299 }
300
301 /// Sets the inner `T`, dropping the previous value.
302 // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
303 #[inline(always)]
304 pub fn set(&mut self, t: T) {
305 *self = Unalign::new(t);
306 }
307
308 /// Updates the inner `T` by calling a function on it.
309 ///
310 /// If [`T: Unaligned`], then `Unalign<T>` implements [`DerefMut`], and that
311 /// impl should be preferred over this method when performing updates, as it
312 /// will usually be faster and more ergonomic.
313 ///
314 /// For large types, this method may be expensive, as it requires copying
315 /// `2 * size_of::<T>()` bytes. \[1\]
316 ///
317 /// \[1\] Since the inner `T` may not be aligned, it would not be sound to
318 /// invoke `f` on it directly. Instead, `update` moves it into a
319 /// properly-aligned location in the local stack frame, calls `f` on it, and
320 /// then moves it back to its original location in `self`.
321 ///
322 /// [`T: Unaligned`]: Unaligned
323 #[inline]
324 pub fn update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O {
325 if mem::align_of::<T>() == 1 {
326 // While we advise callers to use `DerefMut` when `T: Unaligned`,
327 // not all callers will be able to guarantee `T: Unaligned` in all
328 // cases. In particular, callers who are themselves providing an API
329 // which is generic over `T` may sometimes be called by *their*
330 // callers with `T` such that `align_of::<T>() == 1`, but cannot
331 // guarantee this in the general case. Thus, this optimization may
332 // sometimes be helpful.
333
334 // SAFETY: Since `T`'s alignment is 1, `self` satisfies its
335 // alignment by definition.
336 let t = unsafe { self.deref_mut_unchecked() };
337 return f(t);
338 }
339
340 // On drop, this moves `copy` out of itself and uses `ptr::write` to
341 // overwrite `slf`.
342 struct WriteBackOnDrop<T> {
343 copy: ManuallyDrop<T>,
344 slf: *mut Unalign<T>,
345 }
346
347 impl<T> Drop for WriteBackOnDrop<T> {
348 fn drop(&mut self) {
349 // SAFETY: We never use `copy` again as required by
350 // `ManuallyDrop::take`.
351 let copy = unsafe { ManuallyDrop::take(&mut self.copy) };
352 // SAFETY: `slf` is the raw pointer value of `self`. We know it
353 // is valid for writes and properly aligned because `self` is a
354 // mutable reference, which guarantees both of these properties.
355 unsafe { ptr::write(self.slf, Unalign::new(copy)) };
356 }
357 }
358
359 // SAFETY: We know that `self` is valid for reads, properly aligned, and
360 // points to an initialized `Unalign<T>` because it is a mutable
361 // reference, which guarantees all of these properties.
362 //
363 // Since `T: !Copy`, it would be unsound in the general case to allow
364 // both the original `Unalign<T>` and the copy to be used by safe code.
365 // We guarantee that the copy is used to overwrite the original in the
366 // `Drop::drop` impl of `WriteBackOnDrop`. So long as this `drop` is
367 // called before any other safe code executes, soundness is upheld.
368 // While this method can terminate in two ways (by returning normally or
369 // by unwinding due to a panic in `f`), in both cases, `write_back` is
370 // dropped - and its `drop` called - before any other safe code can
371 // execute.
372 let copy = unsafe { ptr::read(self) }.into_inner();
373 let mut write_back = WriteBackOnDrop { copy: ManuallyDrop::new(copy), slf: self };
374
375 let ret = f(&mut write_back.copy);
376
377 drop(write_back);
378 ret
379 }
380}
381
382impl<T: Copy> Unalign<T> {
383 /// Gets a copy of the inner `T`.
384 // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
385 #[inline(always)]
386 pub fn get(&self) -> T {
387 let Unalign(val) = *self;
388 val
389 }
390}
391
392impl<T: Unaligned> Deref for Unalign<T> {
393 type Target = T;
394
395 #[inline(always)]
396 fn deref(&self) -> &T {
397 Ptr::from_ref(self).transparent_wrapper_into_inner().bikeshed_recall_aligned().as_ref()
398 }
399}
400
401impl<T: Unaligned> DerefMut for Unalign<T> {
402 #[inline(always)]
403 fn deref_mut(&mut self) -> &mut T {
404 Ptr::from_mut(self).transparent_wrapper_into_inner().bikeshed_recall_aligned().as_mut()
405 }
406}
407
408impl<T: Unaligned + PartialOrd> PartialOrd<Unalign<T>> for Unalign<T> {
409 #[inline(always)]
410 fn partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering> {
411 PartialOrd::partial_cmp(self.deref(), other.deref())
412 }
413}
414
415impl<T: Unaligned + Ord> Ord for Unalign<T> {
416 #[inline(always)]
417 fn cmp(&self, other: &Unalign<T>) -> Ordering {
418 Ord::cmp(self.deref(), other.deref())
419 }
420}
421
422impl<T: Unaligned + PartialEq> PartialEq<Unalign<T>> for Unalign<T> {
423 #[inline(always)]
424 fn eq(&self, other: &Unalign<T>) -> bool {
425 PartialEq::eq(self.deref(), other.deref())
426 }
427}
428
429impl<T: Unaligned + Eq> Eq for Unalign<T> {}
430
431impl<T: Unaligned + Hash> Hash for Unalign<T> {
432 #[inline(always)]
433 fn hash<H>(&self, state: &mut H)
434 where
435 H: Hasher,
436 {
437 self.deref().hash(state);
438 }
439}
440
441impl<T: Unaligned + Debug> Debug for Unalign<T> {
442 #[inline(always)]
443 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
444 Debug::fmt(self.deref(), f)
445 }
446}
447
448impl<T: Unaligned + Display> Display for Unalign<T> {
449 #[inline(always)]
450 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
451 Display::fmt(self.deref(), f)
452 }
453}
454
455/// A wrapper type to construct uninitialized instances of `T`.
456///
457/// `MaybeUninit` is identical to the [standard library
458/// `MaybeUninit`][core-maybe-uninit] type except that it supports unsized
459/// types.
460///
461/// # Layout
462///
463/// The same layout guarantees and caveats apply to `MaybeUninit<T>` as apply to
464/// the [standard library `MaybeUninit`][core-maybe-uninit] with one exception:
465/// for `T: !Sized`, there is no single value for `T`'s size. Instead, for such
466/// types, the following are guaranteed:
467/// - Every [valid size][valid-size] for `T` is a valid size for
468/// `MaybeUninit<T>` and vice versa
469/// - Given `t: *const T` and `m: *const MaybeUninit<T>` with identical fat
470/// pointer metadata, `t` and `m` address the same number of bytes (and
471/// likewise for `*mut`)
472///
473/// [core-maybe-uninit]: core::mem::MaybeUninit
474/// [valid-size]: crate::KnownLayout#what-is-a-valid-size
475#[repr(transparent)]
476#[doc(hidden)]
477pub struct MaybeUninit<T: ?Sized + KnownLayout>(
478 // SAFETY: `MaybeUninit<T>` has the same size as `T`, because (by invariant
479 // on `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`,
480 // and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT`
481 // accurately reflects the layout of `T`. By invariant on `T::MaybeUninit`,
482 // it admits uninitialized bytes in all positions. Because `MabyeUninit` is
483 // marked `repr(transparent)`, these properties additionally hold true for
484 // `Self`.
485 T::MaybeUninit,
486);
487
488#[doc(hidden)]
489impl<T: ?Sized + KnownLayout> MaybeUninit<T> {
490 /// Constructs a `MaybeUninit<T>` initialized with the given value.
491 #[inline(always)]
492 pub fn new(val: T) -> Self
493 where
494 T: Sized,
495 Self: Sized,
496 {
497 // SAFETY: It is valid to transmute `val` to `MaybeUninit<T>` because it
498 // is both valid to transmute `val` to `T::MaybeUninit`, and it is valid
499 // to transmute from `T::MaybeUninit` to `MaybeUninit<T>`.
500 //
501 // First, it is valid to transmute `val` to `T::MaybeUninit` because, by
502 // invariant on `T::MaybeUninit`:
503 // - For `T: Sized`, `T` and `T::MaybeUninit` have the same size.
504 // - All byte sequences of the correct size are valid values of
505 // `T::MaybeUninit`.
506 //
507 // Second, it is additionally valid to transmute from `T::MaybeUninit`
508 // to `MaybeUninit<T>`, because `MaybeUninit<T>` is a
509 // `repr(transparent)` wrapper around `T::MaybeUninit`.
510 //
511 // These two transmutes are collapsed into one so we don't need to add a
512 // `T::MaybeUninit: Sized` bound to this function's `where` clause.
513 unsafe { crate::util::transmute_unchecked(val) }
514 }
515
516 /// Constructs an uninitialized `MaybeUninit<T>`.
517 #[must_use]
518 #[inline(always)]
519 pub fn uninit() -> Self
520 where
521 T: Sized,
522 Self: Sized,
523 {
524 let uninit = CoreMaybeUninit::<T>::uninit();
525 // SAFETY: It is valid to transmute from `CoreMaybeUninit<T>` to
526 // `MaybeUninit<T>` since they both admit uninitialized bytes in all
527 // positions, and they have the same size (i.e., that of `T`).
528 //
529 // `MaybeUninit<T>` has the same size as `T`, because (by invariant on
530 // `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`,
531 // and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT`
532 // accurately reflects the layout of `T`.
533 //
534 // `CoreMaybeUninit<T>` has the same size as `T` [1] and admits
535 // uninitialized bytes in all positions.
536 //
537 // [1] Per https://doc.rust-lang.org/1.81.0/std/mem/union.MaybeUninit.html#layout-1:
538 //
539 // `MaybeUninit<T>` is guaranteed to have the same size, alignment,
540 // and ABI as `T`
541 unsafe { crate::util::transmute_unchecked(uninit) }
542 }
543
544 /// Creates a `Box<MaybeUninit<T>>`.
545 ///
546 /// This function is useful for allocating large, uninit values on the heap
547 /// without ever creating a temporary instance of `Self` on the stack.
548 ///
549 /// # Errors
550 ///
551 /// Returns an error on allocation failure. Allocation failure is guaranteed
552 /// never to cause a panic or an abort.
553 #[cfg(feature = "alloc")]
554 #[inline]
555 pub fn new_boxed_uninit(meta: T::PointerMetadata) -> Result<Box<Self>, AllocError> {
556 // SAFETY: `alloc::alloc::alloc_zeroed` is a valid argument of
557 // `new_box`. The referent of the pointer returned by `alloc` (and,
558 // consequently, the `Box` derived from it) is a valid instance of
559 // `Self`, because `Self` is `MaybeUninit` and thus admits arbitrary
560 // (un)initialized bytes.
561 unsafe { crate::util::new_box(meta, alloc::alloc::alloc) }
562 }
563
564 /// Extracts the value from the `MaybeUninit<T>` container.
565 ///
566 /// # Safety
567 ///
568 /// The caller must ensure that `self` is in an bit-valid state. Depending
569 /// on subsequent use, it may also need to be in a library-valid state.
570 #[inline(always)]
571 pub unsafe fn assume_init(self) -> T
572 where
573 T: Sized,
574 Self: Sized,
575 {
576 // SAFETY: The caller guarantees that `self` is in an bit-valid state.
577 unsafe { crate::util::transmute_unchecked(self) }
578 }
579}
580
581impl<T: ?Sized + KnownLayout> fmt::Debug for MaybeUninit<T> {
582 #[inline]
583 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
584 f.pad(core::any::type_name::<Self>())
585 }
586}
587
588#[cfg(test)]
589mod tests {
590 use core::panic::AssertUnwindSafe;
591
592 use super::*;
593 use crate::util::testutil::*;
594
595 #[test]
596 fn test_unalign() {
597 // Test methods that don't depend on alignment.
598 let mut u = Unalign::new(AU64(123));
599 assert_eq!(u.get(), AU64(123));
600 assert_eq!(u.into_inner(), AU64(123));
601 assert_eq!(u.get_ptr(), <*const _>::cast::<AU64>(&u));
602 assert_eq!(u.get_mut_ptr(), <*mut _>::cast::<AU64>(&mut u));
603 u.set(AU64(321));
604 assert_eq!(u.get(), AU64(321));
605
606 // Test methods that depend on alignment (when alignment is satisfied).
607 let mut u: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
608 assert_eq!(u.t.try_deref().unwrap(), &AU64(123));
609 assert_eq!(u.t.try_deref_mut().unwrap(), &mut AU64(123));
610 // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
611 assert_eq!(unsafe { u.t.deref_unchecked() }, &AU64(123));
612 // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
613 assert_eq!(unsafe { u.t.deref_mut_unchecked() }, &mut AU64(123));
614 *u.t.try_deref_mut().unwrap() = AU64(321);
615 assert_eq!(u.t.get(), AU64(321));
616
617 // Test methods that depend on alignment (when alignment is not
618 // satisfied).
619 let mut u: ForceUnalign<_, AU64> = ForceUnalign::new(Unalign::new(AU64(123)));
620 assert!(matches!(u.t.try_deref(), Err(AlignmentError { .. })));
621 assert!(matches!(u.t.try_deref_mut(), Err(AlignmentError { .. })));
622
623 // Test methods that depend on `T: Unaligned`.
624 let mut u = Unalign::new(123u8);
625 assert_eq!(u.try_deref(), Ok(&123));
626 assert_eq!(u.try_deref_mut(), Ok(&mut 123));
627 assert_eq!(u.deref(), &123);
628 assert_eq!(u.deref_mut(), &mut 123);
629 *u = 21;
630 assert_eq!(u.get(), 21);
631
632 // Test that some `Unalign` functions and methods are `const`.
633 const _UNALIGN: Unalign<u64> = Unalign::new(0);
634 const _UNALIGN_PTR: *const u64 = _UNALIGN.get_ptr();
635 const _U64: u64 = _UNALIGN.into_inner();
636 // Make sure all code is considered "used".
637 //
638 // TODO(https://github.com/rust-lang/rust/issues/104084): Remove this
639 // attribute.
640 #[allow(dead_code)]
641 const _: () = {
642 let x: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
643 // Make sure that `deref_unchecked` is `const`.
644 //
645 // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
646 let au64 = unsafe { x.t.deref_unchecked() };
647 match au64 {
648 AU64(123) => {}
649 _ => const_unreachable!(),
650 }
651 };
652 }
653
654 #[test]
655 fn test_unalign_update() {
656 let mut u = Unalign::new(AU64(123));
657 u.update(|a| a.0 += 1);
658 assert_eq!(u.get(), AU64(124));
659
660 // Test that, even if the callback panics, the original is still
661 // correctly overwritten. Use a `Box` so that Miri is more likely to
662 // catch any unsoundness (which would likely result in two `Box`es for
663 // the same heap object, which is the sort of thing that Miri would
664 // probably catch).
665 let mut u = Unalign::new(Box::new(AU64(123)));
666 let res = std::panic::catch_unwind(AssertUnwindSafe(|| {
667 u.update(|a| {
668 a.0 += 1;
669 panic!();
670 })
671 }));
672 assert!(res.is_err());
673 assert_eq!(u.into_inner(), Box::new(AU64(124)));
674
675 // Test the align_of::<T>() == 1 optimization.
676 let mut u = Unalign::new([0u8, 1]);
677 u.update(|a| a[0] += 1);
678 assert_eq!(u.get(), [1u8, 1]);
679 }
680
681 #[test]
682 fn test_unalign_copy_clone() {
683 // Test that `Copy` and `Clone` do not cause soundness issues. This test
684 // is mainly meant to exercise UB that would be caught by Miri.
685
686 // `u.t` is definitely not validly-aligned for `AU64`'s alignment of 8.
687 let u = ForceUnalign::<_, AU64>::new(Unalign::new(AU64(123)));
688 #[allow(clippy::clone_on_copy)]
689 let v = u.t.clone();
690 let w = u.t;
691 assert_eq!(u.t.get(), v.get());
692 assert_eq!(u.t.get(), w.get());
693 assert_eq!(v.get(), w.get());
694 }
695
696 #[test]
697 fn test_unalign_trait_impls() {
698 let zero = Unalign::new(0u8);
699 let one = Unalign::new(1u8);
700
701 assert!(zero < one);
702 assert_eq!(PartialOrd::partial_cmp(&zero, &one), Some(Ordering::Less));
703 assert_eq!(Ord::cmp(&zero, &one), Ordering::Less);
704
705 assert_ne!(zero, one);
706 assert_eq!(zero, zero);
707 assert!(!PartialEq::eq(&zero, &one));
708 assert!(PartialEq::eq(&zero, &zero));
709
710 fn hash<T: Hash>(t: &T) -> u64 {
711 let mut h = std::collections::hash_map::DefaultHasher::new();
712 t.hash(&mut h);
713 h.finish()
714 }
715
716 assert_eq!(hash(&zero), hash(&0u8));
717 assert_eq!(hash(&one), hash(&1u8));
718
719 assert_eq!(format!("{:?}", zero), format!("{:?}", 0u8));
720 assert_eq!(format!("{:?}", one), format!("{:?}", 1u8));
721 assert_eq!(format!("{}", zero), format!("{}", 0u8));
722 assert_eq!(format!("{}", one), format!("{}", 1u8));
723 }
724
725 #[test]
726 #[allow(clippy::as_conversions)]
727 fn test_maybe_uninit() {
728 // int
729 {
730 let input = 42;
731 let uninit = MaybeUninit::new(input);
732 // SAFETY: `uninit` is in an initialized state
733 let output = unsafe { uninit.assume_init() };
734 assert_eq!(input, output);
735 }
736
737 // thin ref
738 {
739 let input = 42;
740 let uninit = MaybeUninit::new(&input);
741 // SAFETY: `uninit` is in an initialized state
742 let output = unsafe { uninit.assume_init() };
743 assert_eq!(&input as *const _, output as *const _);
744 assert_eq!(input, *output);
745 }
746
747 // wide ref
748 {
749 let input = [1, 2, 3, 4];
750 let uninit = MaybeUninit::new(&input[..]);
751 // SAFETY: `uninit` is in an initialized state
752 let output = unsafe { uninit.assume_init() };
753 assert_eq!(&input[..] as *const _, output as *const _);
754 assert_eq!(input, *output);
755 }
756 }
757}