cactusref/
drop.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
use alloc::alloc::{Allocator, Global, Layout};
use alloc::vec;
use core::mem::{self, MaybeUninit};
use core::ptr;

#[cfg(doc)]
use crate::adopt::Adopt;
use crate::hash::HashMap;
use crate::link::{Kind, Link};
use crate::rc::RcInnerPtr;
use crate::Rc;

unsafe impl<#[may_dangle] T> Drop for Rc<T> {
    /// Drops the [`Rc`].
    ///
    /// This will decrement the strong reference count. If the strong reference
    /// count reaches zero then the only other references (if any) are [`Weak`],
    /// so we `drop` the inner value.
    ///
    /// [`Weak`]: crate::Weak
    ///
    /// If this `Rc` has adopted any other `Rc`s, drop will trace the reachable
    /// object graph and detect if this `Rc` is part of an orphaned cycle. An
    /// orphaned cycle is a cycle in which all members have no owned references
    /// held by `Rc`s outside of the cycle.
    ///
    /// `Rc`s do not pay the cost of the reachability check unless they use
    /// [`Adopt::adopt_unchecked`].
    ///
    /// [`Adopt::adopt_unchecked`]: crate::Adopt::adopt_unchecked
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// struct Foo;
    ///
    /// impl Drop for Foo {
    ///     fn drop(&mut self) {
    ///         println!("dropped!");
    ///     }
    /// }
    ///
    /// let foo  = Rc::new(Foo);
    /// let foo2 = Rc::clone(&foo);
    ///
    /// drop(foo);    // Doesn't print anything
    /// drop(foo2);   // Prints "dropped!"
    /// ```
    ///
    /// ```
    /// use cactusref::{Adopt, Rc};
    ///
    /// struct Foo(u8);
    ///
    /// impl Drop for Foo {
    ///     fn drop(&mut self) {
    ///         println!("dropped {}!", self.0);
    ///     }
    /// }
    ///
    /// let foo  = Rc::new(Foo(10));
    /// let foo2 = Rc::new(Foo(20));
    ///
    /// unsafe {
    ///     Rc::adopt_unchecked(&foo, &foo2);
    ///     Rc::adopt_unchecked(&foo2, &foo);
    /// }
    ///
    /// drop(foo);    // Doesn't print anything
    /// drop(foo2);   // Prints "dropped 10!" and "dropped 20!"
    /// ```
    ///
    /// # Cycle Detection and Deallocation Algorithm
    ///
    /// [`Rc::adopt_unchecked`] does explicit bookkeeping to store links to
    /// adoptee `Rc`s.  These links form a graph of reachable objects which are
    /// used to detect cycles.
    ///
    /// [`Rc::adopt_unchecked`]: crate::Rc::adopt_unchecked
    ///
    /// On drop, if an `Rc` has no links, it is dropped like a normal `Rc`. If
    /// the `Rc` has links, `Drop` performs a breadth first search by traversing
    /// the forward and backward links stored in each `Rc`. Deallocating cycles
    /// requires correct use of [`Adopt::adopt_unchecked`] and [`Adopt::unadopt`]
    /// to perform the reachability bookkeeping.
    ///
    /// [`Adopt::adopt_unchecked`]: crate::Adopt::adopt_unchecked
    /// [`Adopt::unadopt`]: crate::Adopt::unadopt
    ///
    /// After determining all reachable objects, `Rc` reduces the graph to
    /// objects that form a cycle by performing pairwise reachability checks.
    /// During this step, for each object in the cycle, `Rc` counts the number
    /// of refs held by other objects in the cycle.
    ///
    /// Using the cycle-held references, `Rc` computes whether the object graph
    /// is reachable by any non-cycle nodes by comparing strong counts.
    ///
    /// If the cycle is orphaned, `Rc` busts all the link structures and
    /// deallocates each object.
    ///
    /// ## Performance
    ///
    /// Cycle detection uses breadth first search to trace the object graph.
    /// The runtime complexity of detecting a cycle is `O(links + nodes)` where
    /// links is the number of adoptions that are alive and nodes is the number
    /// of objects in the cycle.
    ///
    /// Determining whether the cycle is orphaned builds on cycle detection and
    /// iterates over all nodes in the graph to see if their strong count is
    /// greater than the number of references in the cycle. The runtime
    /// complexity of finding an orphaned cycle is `O(links + nodes)` where
    /// links is the number of adoptions that are alive and nodes is the number
    /// objects in the cycle.
    fn drop(&mut self) {
        // If `self` is held in a cycle, as we deallocate members of the cycle,
        // they will drop their refs to `self`. To prevent a double free, mark
        // nodes as dead if they have already been deallocated and short
        // circuit.
        if self.inner().is_dead() {
            return;
        }

        // If a drop is occuring it is because there was an existing `Rc` which
        // is maintaining a strong count. Decrement the strong count on drop,
        // even if this `Rc` is dead. This ensures `Weak::upgrade` behaves
        // correctly for deallocated cycles and does not cause a use-after-free.
        self.inner().dec_strong();

        unsafe {
            // If links is empty, the object is either not in a cycle or
            // part of a cycle that has been link busted for deallocation.
            if self.inner().links().borrow().is_empty() {
                // If the object was never in a cycle, `dec_strong` above will
                // kill the `Rc`.
                //
                // If the object was in a cycle, the `Rc` will only be dead if
                // all strong references to it have been dropped.
                if self.inner().is_dead() {
                    drop_unreachable(self);
                }
                // otherwise, ignore the pointed to object; it will be dropped
                // when there are no more remaining strong references to it.
                return;
            }
            if self.inner().is_dead() {
                drop_unreachable_with_adoptions(self);
                return;
            }
            if let Some(cycle) = Self::orphaned_cycle(self) {
                drop_cycle(cycle);
                return;
            }
            debug!("cactusref drop skipped, Rc is reachable");
        }
    }
}

unsafe fn drop_unreachable<T>(this: &mut Rc<T>) {
    debug!("cactusref detected unreachable Rc");
    let forward = Link::forward(this.ptr);
    let backward = Link::backward(this.ptr);
    // Remove reverse links so `this` is not included in cycle detection for
    // objects that had adopted `this`. This prevents a use-after-free in
    // `Rc::orphaned_cycle`.
    let links = this.inner().links();
    for (item, &strong) in links.borrow().iter() {
        match item.kind() {
            Kind::Forward => {
                let mut links = links.borrow_mut();
                links.remove(forward, strong);
                links.remove(backward, strong);
            }
            Kind::Loopback => {
                let mut links = links.borrow_mut();
                links.remove(*item, strong);
            }
            Kind::Backward => {}
        }
    }

    let rcbox = this.ptr.as_ptr();
    // Mark `this` as pending deallocation. This is not strictly necessary since
    // `this` is unreachable, but `kill`ing `this ensures we don't double-free.
    if !(*rcbox).is_uninit() {
        trace!("cactusref deallocating unreachable RcBox {:p}", rcbox);
        // Mark the `RcBox` as uninitialized so we can make its `MaybeUninit`
        // fields uninhabited.
        (*rcbox).make_uninit();

        // Move `T` out of the `RcBox`. Dropping an uninitialized `MaybeUninit`
        // has no effect.
        let inner = mem::replace(&mut (*rcbox).value, MaybeUninit::uninit());
        // destroy the contained `T`.
        drop(inner.assume_init());
        // Move the links `HashMap` out of the `RcBox`. Dropping an uninitialized
        // `MaybeUninit` has no effect.
        let links = mem::replace(&mut (*rcbox).links, MaybeUninit::uninit());
        // Destroy the heap-allocated links.
        drop(links.assume_init());
    }

    // remove the implicit "strong weak" pointer now that we've destroyed the
    // contents.
    (*rcbox).dec_weak();

    if (*rcbox).weak() == 0 {
        // SAFETY: `T` is `Sized`, which means `Layout::for_value_raw` is always
        // safe to call.
        let layout = Layout::for_value_raw(this.ptr.as_ptr());
        Global.deallocate(this.ptr.cast(), layout);
    }
}

unsafe fn drop_cycle<T>(cycle: HashMap<Link<T>, usize>) {
    debug!(
        "cactusref detected orphaned cycle with {} objects",
        cycle.len()
    );
    // Iterate over all the nodes in the cycle, bust all of the links. All nodes
    // in the cycle are reachable by other nodes in the cycle, so removing
    // all cycle-internal links won't result in a leak.
    for (ptr, &refcount) in &cycle {
        trace!(
            "cactusref dropping {:?} member of orphaned cycle with refcount {}",
            ptr,
            refcount
        );

        // Remove reverse links so `this` is not included in cycle detection for
        // objects that had adopted `this`. This prevents a use-after-free in
        // `Rc::orphaned_cycle`.
        //
        // Because the entire cycle is unreachable, the only forward and
        // backward links are to objects in the cycle that we are about to
        // deallocate. This allows us to bust the cycle detection by clearing
        // all links.
        let rcbox = ptr.as_ptr();
        let cycle_strong_refs = {
            let mut links = (*rcbox).links().borrow_mut();
            links
                .extract_if(|link, _| {
                    if let Kind::Forward | Kind::Loopback = link.kind() {
                        cycle.contains_key(link)
                    } else {
                        false
                    }
                })
                .map(|(link, count)| {
                    if let Kind::Forward = link.kind() {
                        count
                    } else {
                        0
                    }
                })
                .sum::<usize>()
        };

        // To be in a cycle, at least one `value` field in an `RcBox` in the
        // cycle holds a strong reference to `this`. Mark all nodes in the cycle
        // as dead so when we deallocate them via the `value` pointer we don't
        // get a double-free.
        for _ in 0..cycle_strong_refs.min((*rcbox).strong()) {
            (*rcbox).dec_strong();
        }
    }

    let mut inners = vec![];
    for (ptr, _) in &cycle {
        if !ptr.is_dead() {
            // This object continues to be referenced outside the cycle in
            // another part of the graph.
            continue;
        }

        let ptr = ptr.into_raw_non_null();
        let rcbox = ptr.as_ptr();

        if !(*rcbox).is_uninit() {
            // Mark the `RcBox` as uninitialized so we can make its
            // `MaybeUninit` fields uninhabited.
            (*rcbox).make_uninit();

            // Move `T` out of the `RcBox`. Dropping an uninitialized
            // `MaybeUninit` has no effect.
            let inner = mem::replace(&mut (*rcbox).value, MaybeUninit::uninit());
            // Move the links `HashMap` out of the `RcBox`. Dropping an
            // uninitialized `MaybeUninit` has no effect.
            let links = mem::replace(&mut (*rcbox).links, MaybeUninit::uninit());
            trace!("cactusref deconstructed member {:p} of orphan cycle", rcbox);
            // Move `T` and the `HashMap` out of the `RcBox` to be dropped after
            // busting the cycle.
            inners.push((inner.assume_init(), links.assume_init()));
        }
    }
    // Drop and deallocate all `T` and `HashMap` objects.
    drop(inners);

    let unreachable_cycle_participants = cycle.into_iter().map(|(ptr, _)| ptr).filter(|ptr| {
        // Filter the set of cycle participants so we only drop `Rc`s that are
        // dead.
        //
        // If an `Rc` is not dead, it continues to be referenced outside of the
        // cycle, for example:
        //
        //  | Rc | -> | Rc | -> | Rc | <-> | Rc |
        //    ^                   |
        //    |-------------------|
        //
        // This object continues to be referenced outside the cycle in another
        // part of the graph.
        ptr.is_dead()
    });

    for ptr in unreachable_cycle_participants {
        let ptr = ptr.into_raw_non_null();
        trace!(
            "cactusref deallocating RcBox after dropping item {:?} in orphaned cycle",
            ptr
        );

        let rcbox = ptr.as_ptr();
        // remove the implicit "strong weak" pointer now that we've destroyed
        // the contents.
        (*rcbox).dec_weak();

        if (*rcbox).weak() == 0 {
            trace!(
                "no more weak references, deallocating layout for item {:?} in orphaned cycle",
                ptr
            );
            // SAFETY: `T` is `Sized`, which means `Layout::for_value_raw` is
            // always safe to call.
            let layout = Layout::for_value_raw(ptr.as_ptr());
            Global.deallocate(ptr.cast(), layout);
        }
    }
}

// Drop an `Rc` that is unreachable, but has adopted other `Rc`s.
//
// Unreachable `Rc`s have a strong count of zero, but because they have adopted
// other `Rc`s, other `Rc`s have back links to `this`.
//
// Before dropping `this`, we must traverse `this`'s forward links to collect
// all of `this`'s adoptions. Then, remove `this` from it's adoptions back
// links. By pruning back links in the rest of the graph, we can ensure that
// `this` and its `RcBox` are not referenced and can be safely deallocated.
//
// # Diagram
//
//          this
// |--------------------|
// | ptr:    RcBox      |
// |      |----------| <--------|
// |      | value: T |  |       |
// |      | links: ------> | other RcBox |
// |      |   |----------> | other RcBox |
// |      |          |  |       |
// |      |----------| <--------|
// |--------------------|
unsafe fn drop_unreachable_with_adoptions<T>(this: &mut Rc<T>) {
    // Construct a forward and back link from `this` so we can
    // purge it from the adopted `links`.
    let forward = Link::forward(this.ptr);
    let backward = Link::backward(this.ptr);
    // `this` is unreachable but may have been adopted and dropped.
    //
    // Iterate over all of the other nodes in the graph that have links to
    // `this` and remove all of the adoptions. By doing so, when other graph
    // participants are dropped, they do not try to deallocate `this`.
    //
    // `this` is fully removed from the graph.
    let links = this.inner().links();
    for (item, &strong) in links.borrow().iter() {
        // if `this` has adopted itself, we don't need to clear these links in
        // the loop to avoid an already borrowed error.
        if ptr::eq(this.inner(), item.as_ptr()) {
            continue;
        }
        let mut links = item.as_ref().links().borrow_mut();
        // The cycle counts don't distinguish which nodes the cycle strong
        // counts are from, so purge as many strong counts as possible.
        //
        // Additionally, `item` may have forward adoptions for `this`, so
        // purge those as well.
        //
        // `Links::remove` ensures the count for forward and back links will not
        // underflow.
        links.remove(forward, strong);
        links.remove(backward, strong);
    }
    // Bust the links for this since it is now unreachable and set to be
    // deallocated.
    links.borrow_mut().clear();

    let rcbox = this.ptr.as_ptr();
    // Mark `this` as pending deallocation. This is not strictly necessary since
    // `this` is unreachable, but `kill`ing `this ensures we don't double-free.
    if !(*rcbox).is_uninit() {
        trace!(
            "cactusref deallocating RcBox after dropping adopted and unreachable item {:p} in the object graph",
            rcbox
        );
        // Mark the `RcBox` as uninitialized so we can make its `MaybeUninit`
        // fields uninhabited.
        (*rcbox).make_uninit();

        // Move `T` out of the `RcBox`. Dropping an uninitialized `MaybeUninit`
        // has no effect.
        let inner = mem::replace(&mut (*rcbox).value, MaybeUninit::uninit());
        // destroy the contained `T`.
        drop(inner.assume_init());
        // Move the links `HashMap` out of the `RcBox`. Dropping an uninitialized
        // `MaybeUninit` has no effect.
        let links = mem::replace(&mut (*rcbox).links, MaybeUninit::uninit());
        // Destroy the heap-allocated links.
        drop(links.assume_init());
    }

    // remove the implicit "strong weak" pointer now that we've destroyed the
    // contents.
    (*rcbox).dec_weak();

    if (*rcbox).weak() == 0 {
        trace!(
            "no more weak references, deallocating layout for adopted and unreachable item {:?} in the object graph",
            this.ptr
        );
        // SAFETY: `T` is `Sized`, which means `Layout::for_value_raw` is always
        // safe to call.
        let layout = Layout::for_value_raw(this.ptr.as_ptr());
        Global.deallocate(this.ptr.cast(), layout);
    }
}