1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
//! Single-threaded reference-counting pointers. 'Rc' stands for 'Reference
//! Counted'.
//!
//! The type [`Rc<T>`][`Rc`] provides shared ownership of a value of type `T`,
//! allocated in the heap. Invoking [`clone`][clone] on [`Rc`] produces a new
//! pointer to the same allocation in the heap. When the last [`Rc`] pointer to a
//! given allocation is destroyed, the value stored in that allocation (often
//! referred to as "inner value") is also dropped.
//!
//! Shared references in Rust disallow mutation by default, and [`Rc`]
//! is no exception: you cannot generally obtain a mutable reference to
//! something inside an [`Rc`]. If you need mutability, put a [`Cell`]
//! or [`RefCell`] inside the [`Rc`]; see [an example of mutability
//! inside an `Rc`][mutability].
//!
//! [`Rc`] uses non-atomic reference counting. This means that overhead is very
//! low, but an [`Rc`] cannot be sent between threads, and consequently [`Rc`]
//! does not implement [`Send`][send]. As a result, the Rust compiler
//! will check *at compile time* that you are not sending [`Rc`]s between
//! threads. If you need multi-threaded, atomic reference counting, use
//! [`sync::Arc`][arc].
//!
//! The [`downgrade`][downgrade] method can be used to create a non-owning
//! [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
//! to an [`Rc`], but this will return [`None`] if the value stored in the allocation has
//! already been dropped. In other words, `Weak` pointers do not keep the value
//! inside the allocation alive; however, they *do* keep the allocation
//! (the backing store for the inner value) alive.
//!
//! A cycle between [`Rc`] pointers will never be deallocated. For this reason,
//! [`Weak`] is used to break cycles. For example, a tree could have strong
//! [`Rc`] pointers from parent nodes to children, and [`Weak`] pointers from
//! children back to their parents.
//!
//! `Rc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
//! so you can call `T`'s methods on a value of type [`Rc<T>`][`Rc`]. To avoid name
//! clashes with `T`'s methods, the methods of [`Rc<T>`][`Rc`] itself are associated
//! functions, called using [fully qualified syntax]:
//!
//! ```
//! use cactusref::Rc;
//!
//! let my_rc = Rc::new(());
//! Rc::downgrade(&my_rc);
//! ```
//!
//! `Rc<T>`'s implementations of traits like `Clone` may also be called using
//! fully qualified syntax. Some people prefer to use fully qualified syntax,
//! while others prefer using method-call syntax.
//!
//! ```
//! use cactusref::Rc;
//!
//! let rc = Rc::new(());
//! // Method-call syntax
//! let rc2 = rc.clone();
//! // Fully qualified syntax
//! let rc3 = Rc::clone(&rc);
//! ```
//!
//! [`Weak<T>`][`Weak`] does not auto-dereference to `T`, because the inner value may have
//! already been dropped.
//!
//! # Cloning references
//!
//! Creating a new reference to the same allocation as an existing reference counted pointer
//! is done using the `Clone` trait implemented for [`Rc<T>`][`Rc`] and [`Weak<T>`][`Weak`].
//!
//! ```
//! use cactusref::Rc;
//!
//! let foo = Rc::new(vec![1.0, 2.0, 3.0]);
//! // The two syntaxes below are equivalent.
//! let a = foo.clone();
//! let b = Rc::clone(&foo);
//! // a and b both point to the same memory location as foo.
//! ```
//!
//! The `Rc::clone(&from)` syntax is the most idiomatic because it conveys more explicitly
//! the meaning of the code. In the example above, this syntax makes it easier to see that
//! this code is creating a new reference rather than copying the whole content of foo.
//!
//! # Examples
//!
//! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`.
//! We want to have our `Gadget`s point to their `Owner`. We can't do this with
//! unique ownership, because more than one gadget may belong to the same
//! `Owner`. [`Rc`] allows us to share an `Owner` between multiple `Gadget`s,
//! and have the `Owner` remain allocated as long as any `Gadget` points at it.
//!
//! ```
//! use cactusref::Rc;
//!
//! struct Owner {
//!     name: String,
//!     // ...other fields
//! }
//!
//! struct Gadget {
//!     id: i32,
//!     owner: Rc<Owner>,
//!     // ...other fields
//! }
//!
//! // Create a reference-counted `Owner`.
//! let gadget_owner: Rc<Owner> = Rc::new(
//!     Owner {
//!         name: "Gadget Man".to_string(),
//!     }
//! );
//!
//! // Create `Gadget`s belonging to `gadget_owner`. Cloning the `Rc<Owner>`
//! // gives us a new pointer to the same `Owner` allocation, incrementing
//! // the reference count in the process.
//! let gadget1 = Gadget {
//!     id: 1,
//!     owner: Rc::clone(&gadget_owner),
//! };
//! let gadget2 = Gadget {
//!     id: 2,
//!     owner: Rc::clone(&gadget_owner),
//! };
//!
//! // Dispose of our local variable `gadget_owner`.
//! drop(gadget_owner);
//!
//! // Despite dropping `gadget_owner`, we're still able to print out the name
//! // of the `Owner` of the `Gadget`s. This is because we've only dropped a
//! // single `Rc<Owner>`, not the `Owner` it points to. As long as there are
//! // other `Rc<Owner>` pointing at the same `Owner` allocation, it will remain
//! // live. The field projection `gadget1.owner.name` works because
//! // `Rc<Owner>` automatically dereferences to `Owner`.
//! println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name);
//! println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name);
//!
//! // At the end of the function, `gadget1` and `gadget2` are destroyed, and
//! // with them the last counted references to our `Owner`. Gadget Man now
//! // gets destroyed as well.
//! ```
//!
//! If our requirements change, and we also need to be able to traverse from
//! `Owner` to `Gadget`, we will run into problems. An [`Rc`] pointer from `Owner`
//! to `Gadget` introduces a cycle. This means that their
//! reference counts can never reach 0, and the allocation will never be destroyed:
//! a memory leak. In order to get around this, we can use [`Weak`]
//! pointers.
//!
//! Rust actually makes it somewhat difficult to produce this loop in the first
//! place. In order to end up with two values that point at each other, one of
//! them needs to be mutable. This is difficult because [`Rc`] enforces
//! memory safety by only giving out shared references to the value it wraps,
//! and these don't allow direct mutation. We need to wrap the part of the
//! value we wish to mutate in a [`RefCell`], which provides *interior
//! mutability*: a method to achieve mutability through a shared reference.
//! [`RefCell`] enforces Rust's borrowing rules at runtime.
//!
//! ```
//! use cactusref::Rc;
//! use cactusref::Weak;
//! use std::cell::RefCell;
//!
//! struct Owner {
//!     name: String,
//!     gadgets: RefCell<Vec<Weak<Gadget>>>,
//!     // ...other fields
//! }
//!
//! struct Gadget {
//!     id: i32,
//!     owner: Rc<Owner>,
//!     // ...other fields
//! }
//!
//! // Create a reference-counted `Owner`. Note that we've put the `Owner`'s
//! // vector of `Gadget`s inside a `RefCell` so that we can mutate it through
//! // a shared reference.
//! let gadget_owner: Rc<Owner> = Rc::new(
//!     Owner {
//!         name: "Gadget Man".to_string(),
//!         gadgets: RefCell::new(vec![]),
//!     }
//! );
//!
//! // Create `Gadget`s belonging to `gadget_owner`, as before.
//! let gadget1 = Rc::new(
//!     Gadget {
//!         id: 1,
//!         owner: Rc::clone(&gadget_owner),
//!     }
//! );
//! let gadget2 = Rc::new(
//!     Gadget {
//!         id: 2,
//!         owner: Rc::clone(&gadget_owner),
//!     }
//! );
//!
//! // Add the `Gadget`s to their `Owner`.
//! {
//!     let mut gadgets = gadget_owner.gadgets.borrow_mut();
//!     gadgets.push(Rc::downgrade(&gadget1));
//!     gadgets.push(Rc::downgrade(&gadget2));
//!
//!     // `RefCell` dynamic borrow ends here.
//! }
//!
//! // Iterate over our `Gadget`s, printing their details out.
//! for gadget_weak in gadget_owner.gadgets.borrow().iter() {
//!
//!     // `gadget_weak` is a `Weak<Gadget>`. Since `Weak` pointers can't
//!     // guarantee the allocation still exists, we need to call
//!     // `upgrade`, which returns an `Option<Rc<Gadget>>`.
//!     //
//!     // In this case we know the allocation still exists, so we simply
//!     // `unwrap` the `Option`. In a more complicated program, you might
//!     // need graceful error handling for a `None` result.
//!
//!     let gadget = gadget_weak.upgrade().unwrap();
//!     println!("Gadget {} owned by {}", gadget.id, gadget.owner.name);
//! }
//!
//! // At the end of the function, `gadget_owner`, `gadget1`, and `gadget2`
//! // are destroyed. There are now no strong (`Rc`) pointers to the
//! // gadgets, so they are destroyed. This zeroes the reference count on
//! // Gadget Man, so he gets destroyed as well.
//! ```
//!
//! [clone]: Clone::clone
//! [`Cell`]: core::cell::Cell
//! [`RefCell`]: core::cell::RefCell
//! [send]: core::marker::Send
#![cfg_attr(feature = "std", doc = "[arc]: std::sync::Arc")]
#![cfg_attr(
    not(feature = "std"),
    doc = "[arc]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html"
)]
//! [`Deref`]: core::ops::Deref
//! [downgrade]: Rc::downgrade
//! [upgrade]: Weak::upgrade
//! [mutability]: core::cell#introducing-mutability-inside-of-something-immutable
//! [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name

use core::borrow;
use core::cell::{Cell, RefCell};
use core::cmp::Ordering;
use core::convert::From;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::intrinsics::abort;
use core::marker::{PhantomData, Unpin};
use core::mem::{self, ManuallyDrop, MaybeUninit};
use core::ops::Deref;
use core::pin::Pin;
use core::ptr::{self, NonNull};

use alloc::alloc::handle_alloc_error;
use alloc::alloc::{AllocError, Allocator, Global, Layout};
use alloc::boxed::Box;

use crate::link::Links;

#[cfg(test)]
mod tests;

// This is repr(C) to future-proof against possible field-reordering, which
// would interfere with otherwise safe [into|from]_raw() of transmutable
// inner types.
#[repr(C)]
pub(crate) struct RcBox<T> {
    strong: Cell<usize>,
    weak: Cell<usize>,
    pub links: MaybeUninit<RefCell<Links<T>>>,
    pub value: MaybeUninit<T>,
}

impl<T> RcBox<T> {
    /// # Safety
    ///
    /// Callers must ensure this `RcBox` is not dead.
    #[inline]
    pub(crate) unsafe fn links(&self) -> &RefCell<Links<T>> {
        let links = &self.links;
        // SAFETY: because callers have ensured the `RcBox` is not dead, `links`
        // has not yet been deallocated and the `MaybeUninit` is inhabited.
        let pointer_to_links = links as *const MaybeUninit<RefCell<Links<T>>>;
        &*(pointer_to_links.cast::<RefCell<Links<T>>>())
    }
}

/// A single-threaded reference-counting pointer. 'Rc' stands for 'Reference
/// Counted'.
///
/// See the [module-level documentation](./index.html) for more details.
///
/// The inherent methods of `Rc` are all associated functions, which means
/// that you have to call them as e.g., [`Rc::get_mut(&mut value)`][get_mut] instead of
/// `value.get_mut()`. This avoids conflicts with methods of the inner type `T`.
///
/// [get_mut]: Rc::get_mut
pub struct Rc<T> {
    pub(crate) ptr: NonNull<RcBox<T>>,
    phantom: PhantomData<RcBox<T>>,
}

/// `Rc` is not `Send`.
///
/// ```compile_fail
/// use cactusref::Rc;
/// fn requires_send<T: Send>(val: T) {}
/// let rc = Rc::<usize>::new(1);
/// requires_send(rc);
/// ```
mod rc_is_not_send {}

/// `Rc` is not `Sync`.
///
/// ```compile_fail
/// use cactusref::Rc;
/// fn requires_sync<T: Sync>(val: T) {}
/// let rc = Rc::<usize>::new(1);
/// requires_sync(rc);
/// ```
mod rc_is_not_sync {}

impl<T> Rc<T> {
    #[inline(always)]
    pub(crate) fn inner(&self) -> &RcBox<T> {
        // This unsafety is ok because while this Rc is alive we're guaranteed
        // that the inner pointer is valid.
        unsafe { self.ptr.as_ref() }
    }

    fn from_inner(ptr: NonNull<RcBox<T>>) -> Self {
        Self {
            ptr,
            phantom: PhantomData,
        }
    }

    unsafe fn from_ptr(ptr: *mut RcBox<T>) -> Self {
        Self::from_inner(NonNull::new_unchecked(ptr))
    }
}

impl<T> Rc<T> {
    /// Constructs a new `Rc<T>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let five = Rc::new(5);
    /// ```
    pub fn new(value: T) -> Rc<T> {
        // There is an implicit weak pointer owned by all the strong
        // pointers, which ensures that the weak destructor never frees
        // the allocation while the strong destructor is running, even
        // if the weak pointer is stored inside the strong one.
        Self::from_inner(
            Box::leak(Box::new(RcBox {
                strong: Cell::new(1),
                weak: Cell::new(1),
                links: MaybeUninit::new(RefCell::new(Links::new())),
                value: MaybeUninit::new(value),
            }))
            .into(),
        )
    }

    /// Constructs a new `Rc` with uninitialized contents.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let mut five = Rc::<u32>::new_uninit();
    ///
    /// let five = unsafe {
    ///     // Deferred initialization:
    ///     Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5)
    /// ```
    #[must_use]
    pub fn new_uninit() -> Rc<MaybeUninit<T>> {
        unsafe {
            Rc::from_ptr(Rc::allocate_for_layout(
                Layout::new::<T>(),
                |layout| Global.allocate(layout),
                <*mut u8>::cast,
            ))
        }
    }

    /// Constructs a new `Pin<Rc<T>>`. If `T` does not implement `Unpin`, then
    /// `value` will be pinned in memory and unable to be moved.
    pub fn pin(value: T) -> Pin<Rc<T>> {
        unsafe { Pin::new_unchecked(Rc::new(value)) }
    }

    /// Returns the inner value, if the `Rc` has exactly one strong reference.
    ///
    /// Otherwise, an [`Err`] is returned with the same `Rc` that was
    /// passed in.
    ///
    /// This will succeed even if there are outstanding weak references.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let x = Rc::new(3);
    /// assert_eq!(Rc::try_unwrap(x), Ok(3));
    ///
    /// let x = Rc::new(4);
    /// let _y = Rc::clone(&x);
    /// assert_eq!(*Rc::try_unwrap(x).unwrap_err(), 4);
    /// ```
    ///
    /// # Errors
    ///
    /// If the given `Rc` does not have exactly one strong reference, it is
    /// returned in the `Err` variant of the returned `Result`.
    #[inline]
    pub fn try_unwrap(this: Self) -> Result<T, Self> {
        if Rc::strong_count(&this) == 1 {
            unsafe {
                let val = ptr::read(&*this); // copy the contained object

                // Indicate to Weaks that they can't be promoted by decrementing
                // the strong count, and then remove the implicit "strong weak"
                // pointer while also handling drop logic by just crafting a
                // fake Weak.
                this.inner().dec_strong();
                let _weak = Weak {
                    ptr: this.ptr,
                    phantom: PhantomData,
                };
                mem::forget(this);
                Ok(val)
            }
        } else {
            Err(this)
        }
    }
}

impl<T> Rc<MaybeUninit<T>> {
    /// Converts to `Rc<T>`.
    ///
    /// # Safety
    ///
    /// As with [`MaybeUninit::assume_init`],
    /// it is up to the caller to guarantee that the inner value
    /// really is in an initialized state.
    /// Calling this when the content is not yet fully initialized
    /// causes immediate undefined behavior.
    ///
    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let mut five = Rc::<u32>::new_uninit();
    ///
    /// let five = unsafe {
    ///     // Deferred initialization:
    ///     Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5)
    /// ```
    #[inline]
    #[must_use]
    pub unsafe fn assume_init(self) -> Rc<T> {
        Rc::from_inner(ManuallyDrop::new(self).ptr.cast())
    }
}

impl<T> Rc<T> {
    /// Consumes the `Rc`, returning the wrapped pointer.
    ///
    /// To avoid a memory leak the pointer must be converted back to an `Rc` using
    /// [`Rc::from_raw`][from_raw].
    ///
    /// [from_raw]: Rc::from_raw
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let x = Rc::new("hello".to_owned());
    /// let x_ptr = Rc::into_raw(x);
    /// assert_eq!(unsafe { &*x_ptr }, "hello");
    /// // Reconstruct the `Rc` to avoid a leak.
    /// let _ = unsafe { Rc::from_raw(x_ptr) };
    /// ```
    #[must_use]
    pub fn into_raw(this: Self) -> *const T {
        let ptr = Self::as_ptr(&this);
        mem::forget(this);
        ptr
    }

    /// Provides a raw pointer to the data.
    ///
    /// The counts are not affected in any way and the `Rc` is not consumed. The pointer is valid
    /// for as long there are strong counts in the `Rc`.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let x = Rc::new("hello".to_owned());
    /// let y = Rc::clone(&x);
    /// let x_ptr = Rc::as_ptr(&x);
    /// assert_eq!(x_ptr, Rc::as_ptr(&y));
    /// assert_eq!(unsafe { &*x_ptr }, "hello");
    /// ```
    #[must_use]
    pub fn as_ptr(this: &Self) -> *const T {
        let ptr: *mut RcBox<T> = NonNull::as_ptr(this.ptr);

        // SAFETY: This cannot go through Deref::deref or Rc::inner because
        // this is required to retain raw/mut provenance such that e.g. `get_mut` can
        // write through the pointer after the Rc is recovered through `from_raw`.
        unsafe {
            // SAFETY: we can cast the `MaybeUninit<T>` to a `T` because we are
            // calling and associated function with a live `Rc`. If an `Rc` is
            // not dead, the inner `MaybeUninit` is inhabited.
            ptr::addr_of_mut!((*ptr).value).cast::<T>()
        }
    }

    /// Constructs an `Rc<T>` from a raw pointer.
    ///
    /// The raw pointer must have been previously returned by a call to
    /// [`Rc<U>::into_raw`][into_raw] where `U` must have the same size
    /// and alignment as `T`. This is trivially true if `U` is `T`.
    /// Note that if `U` is not `T` but has the same size and alignment, this is
    /// basically like transmuting references of different types. See
    /// [`mem::transmute`][transmute] for more information on what
    /// restrictions apply in this case.
    ///
    /// The user of `from_raw` has to make sure a specific value of `T` is only
    /// dropped once.
    ///
    /// This function is unsafe because improper use may lead to memory unsafety,
    /// even if the returned `Rc<T>` is never accessed.
    ///
    /// [into_raw]: Rc::into_raw
    /// [transmute]: core::mem::transmute
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let x = Rc::new("hello".to_owned());
    /// let x_ptr = Rc::into_raw(x);
    ///
    /// unsafe {
    ///     // Convert back to an `Rc` to prevent leak.
    ///     let x = Rc::from_raw(x_ptr);
    ///     assert_eq!(&*x, "hello");
    ///
    ///     // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe.
    /// }
    ///
    /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
    /// ```
    ///
    /// # Safety
    ///
    /// Callers must ensure that `ptr` points to a live `Rc` and was created
    /// with a call to [`Rc::into_raw`].
    pub unsafe fn from_raw(ptr: *const T) -> Self {
        let offset = data_offset(ptr);

        // Reverse the offset to find the original RcBox.
        let rc_ptr = (ptr as *mut u8)
            .offset(-offset)
            .with_metadata_of(ptr as *mut RcBox<T>);

        Self::from_ptr(rc_ptr)
    }

    /// Creates a new [`Weak`] pointer to this allocation.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// let weak_five = Rc::downgrade(&five);
    /// ```
    #[must_use]
    pub fn downgrade(this: &Self) -> Weak<T> {
        this.inner().inc_weak();
        // Make sure we do not create a dangling Weak
        debug_assert!(!is_dangling(this.ptr.as_ptr()));
        Weak {
            ptr: this.ptr,
            phantom: PhantomData,
        }
    }

    /// Gets the number of [`Weak`] pointers to this allocation.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let five = Rc::new(5);
    /// let _weak_five = Rc::downgrade(&five);
    ///
    /// assert_eq!(1, Rc::weak_count(&five));
    /// ```
    #[inline]
    #[must_use]
    pub fn weak_count(this: &Self) -> usize {
        this.inner().weak() - 1
    }

    /// Gets the number of strong (`Rc`) pointers to this allocation.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let five = Rc::new(5);
    /// let _also_five = Rc::clone(&five);
    ///
    /// assert_eq!(2, Rc::strong_count(&five));
    /// ```
    #[inline]
    #[must_use]
    pub fn strong_count(this: &Self) -> usize {
        this.inner().strong()
    }

    /// Increments the strong reference count on the `Rc<T>` associated with the
    /// provided pointer by one.
    ///
    /// # Safety
    ///
    /// The pointer must have been obtained through `Rc::into_raw`, and the
    /// associated `Rc` instance must be valid (i.e. the strong count must be at
    /// least 1) for the duration of this method.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// unsafe {
    ///     let ptr = Rc::into_raw(five);
    ///     Rc::increment_strong_count(ptr);
    ///
    ///     let five = Rc::from_raw(ptr);
    ///     assert_eq!(2, Rc::strong_count(&five));
    ///
    ///     // Decrement the strong count to avoid a leak.
    ///     Rc::decrement_strong_count(ptr);
    /// }
    /// ```
    #[inline]
    pub unsafe fn increment_strong_count(ptr: *const T) {
        // Retain Rc, but don't touch refcount by wrapping in ManuallyDrop
        let rc = ManuallyDrop::new(Rc::<T>::from_raw(ptr));
        // Now increase refcount, but don't drop new refcount either
        let _rc_clone: ManuallyDrop<_> = rc.clone();
    }

    /// Decrements the strong reference count on the `Rc<T>` associated with the
    /// provided pointer by one.
    ///
    /// # Safety
    ///
    /// The pointer must have been obtained through `Rc::into_raw`, and the
    /// associated `Rc` instance must be valid (i.e. the strong count must be at
    /// least 1) when invoking this method. This method can be used to release
    /// the final `Rc` and backing storage, but **should not** be called after
    /// the final `Rc` has been released.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// unsafe {
    ///     let ptr = Rc::into_raw(five);
    ///     Rc::increment_strong_count(ptr);
    ///
    ///     let five = Rc::from_raw(ptr);
    ///     assert_eq!(2, Rc::strong_count(&five));
    ///     Rc::decrement_strong_count(ptr);
    ///     assert_eq!(1, Rc::strong_count(&five));
    /// }
    /// ```
    #[inline]
    pub unsafe fn decrement_strong_count(ptr: *const T) {
        drop(Rc::from_raw(ptr));
    }

    /// Returns `true` if there are no other `Rc` or [`Weak`] pointers to
    /// this allocation.
    #[inline]
    fn is_unique(this: &Self) -> bool {
        Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1
    }

    /// Returns a mutable reference into the given `Rc`, if there are
    /// no other `Rc` or [`Weak`] pointers to the same allocation.
    ///
    /// Returns [`None`] otherwise, because it is not safe to
    /// mutate a shared value.
    ///
    /// See also [`make_mut`][make_mut], which will [`clone`][clone]
    /// the inner value when there are other pointers.
    ///
    /// [make_mut]: Rc::make_mut
    /// [clone]: Clone::clone
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let mut x = Rc::new(3);
    /// *Rc::get_mut(&mut x).unwrap() = 4;
    /// assert_eq!(*x, 4);
    ///
    /// let _y = Rc::clone(&x);
    /// assert!(Rc::get_mut(&mut x).is_none());
    /// ```
    #[inline]
    pub fn get_mut(this: &mut Self) -> Option<&mut T> {
        if Rc::is_unique(this) {
            unsafe { Some(Rc::get_mut_unchecked(this)) }
        } else {
            None
        }
    }

    /// Returns a mutable reference into the given `Rc`,
    /// without any check.
    ///
    /// See also [`get_mut`], which is safe and does appropriate checks.
    ///
    /// [`get_mut`]: Rc::get_mut
    ///
    /// # Safety
    ///
    /// Any other `Rc` or [`Weak`] pointers to the same allocation must not be dereferenced
    /// for the duration of the returned borrow.
    /// This is trivially the case if no such pointers exist,
    /// for example immediately after `Rc::new`.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let mut x = Rc::new(String::new());
    /// unsafe {
    ///     Rc::get_mut_unchecked(&mut x).push_str("foo")
    /// }
    /// assert_eq!(*x, "foo");
    /// ```
    #[inline]
    pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
        debug_assert!(!this.inner().is_dead());
        // We are careful to *not* create a reference covering the "count" fields, as
        // this would conflict with accesses to the reference counts (e.g. by `Weak`).
        //
        // Safety: If we have an `Rc`, then the allocation is not dead so the `MaybeUninit`
        // is inhabited.
        let value = &mut (*this.ptr.as_ptr()).value;
        // SAFETY: we can cast the `MaybeUninit<T>` to a `T` because we are
        // calling and associated function with a live `Rc`. If an `Rc` is not
        // dead, the inner `MaybeUninit` is inhabited.
        let pointer_to_value = (value as *mut MaybeUninit<T>).cast::<T>();
        &mut *(pointer_to_value)
    }

    /// Returns `true` if the two `Rc`s point to the same allocation
    /// (in a vein similar to [`ptr::eq`]).
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let five = Rc::new(5);
    /// let same_five = Rc::clone(&five);
    /// let other_five = Rc::new(5);
    ///
    /// assert!(Rc::ptr_eq(&five, &same_five));
    /// assert!(!Rc::ptr_eq(&five, &other_five));
    /// ```
    ///
    /// [`ptr::eq`]: core::ptr::eq
    #[inline]
    #[must_use]
    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
        this.ptr.as_ptr() == other.ptr.as_ptr()
    }
}

impl<T: Clone> Rc<T> {
    /// Makes a mutable reference into the given `Rc`.
    ///
    /// If there are other `Rc` pointers to the same allocation, then `make_mut` will
    /// [`clone`] the inner value to a new allocation to ensure unique ownership.  This is also
    /// referred to as clone-on-write.
    ///
    /// If there are no other `Rc` pointers to this allocation, then [`Weak`]
    /// pointers to this allocation will be disassociated.
    ///
    /// See also [`get_mut`], which will fail rather than cloning.
    ///
    /// [`clone`]: Clone::clone
    /// [`get_mut`]: Rc::get_mut
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let mut data = Rc::new(5);
    ///
    /// *Rc::make_mut(&mut data) += 1;        // Won't clone anything
    /// let mut other_data = Rc::clone(&data);    // Won't clone inner data
    /// *Rc::make_mut(&mut data) += 1;        // Clones inner data
    /// *Rc::make_mut(&mut data) += 1;        // Won't clone anything
    /// *Rc::make_mut(&mut other_data) *= 2;  // Won't clone anything
    ///
    /// // Now `data` and `other_data` point to different allocations.
    /// assert_eq!(*data, 8);
    /// assert_eq!(*other_data, 12);
    /// ```
    ///
    /// [`Weak`] pointers will be disassociated:
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let mut data = Rc::new(75);
    /// let weak = Rc::downgrade(&data);
    ///
    /// assert!(75 == *data);
    /// assert!(75 == *weak.upgrade().unwrap());
    ///
    /// *Rc::make_mut(&mut data) += 1;
    ///
    /// assert!(76 == *data);
    /// assert!(weak.upgrade().is_none());
    /// ```
    #[inline]
    pub fn make_mut(this: &mut Self) -> &mut T {
        if Rc::strong_count(this) != 1 {
            // Gotta clone the data, there are other Rcs.
            // Pre-allocate memory to allow writing the cloned value directly.
            let mut rc = Self::new_uninit();
            unsafe {
                let data = Rc::get_mut_unchecked(&mut rc);
                data.as_mut_ptr().write((**this).clone());
                *this = rc.assume_init();
            }
        } else if Rc::weak_count(this) != 0 {
            // Can just steal the data, all that's left is Weaks
            let mut rc = Self::new_uninit();
            unsafe {
                let data: &mut MaybeUninit<T> = mem::transmute(Rc::get_mut_unchecked(&mut rc));
                data.as_mut_ptr().copy_from_nonoverlapping(&**this, 1);

                this.inner().dec_strong();
                // Remove implicit strong-weak ref (no need to craft a fake
                // Weak here -- we know other Weaks can clean up for us)
                this.inner().dec_weak();
                ptr::write(this, rc.assume_init());
            }
        }
        // This unsafety is ok because we're guaranteed that the pointer
        // returned is the *only* pointer that will ever be returned to T. Our
        // reference count is guaranteed to be 1 at this point, and we required
        // the `Rc<T>` itself to be `mut`, so we're returning the only possible
        // reference to the allocation.
        unsafe {
            let value = &mut this.ptr.as_mut().value;
            // SAFETY: we can cast the `MaybeUninit<T>` to a `T` because we are
            // calling and associated function with a live `Rc`. If an `Rc` is
            // not dead, the inner `MaybeUninit` is inhabited.
            let pointer_to_value = (value as *mut MaybeUninit<T>).cast::<T>();
            &mut *(pointer_to_value)
        }
    }
}

impl<T> Rc<T> {
    /// Allocates an `RcBox<T>` with sufficient space for
    /// a possibly-unsized inner value where the value has the layout provided.
    ///
    /// The function `mem_to_rcbox` is called with the data pointer
    /// and must return back a (potentially fat)-pointer for the `RcBox<T>`.
    unsafe fn allocate_for_layout(
        value_layout: Layout,
        allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
        mem_to_rcbox: impl FnOnce(*mut u8) -> *mut RcBox<T>,
    ) -> *mut RcBox<T> {
        // Calculate layout using the given value layout.
        // Previously, layout was calculated on the expression
        // `&*(ptr as *const RcBox<T>)`, but this created a misaligned
        // reference (see #54908).
        let layout = Layout::new::<RcBox<()>>()
            .extend(value_layout)
            .unwrap()
            .0
            .pad_to_align();
        Rc::try_allocate_for_layout(value_layout, allocate, mem_to_rcbox)
            .unwrap_or_else(|_| handle_alloc_error(layout))
    }

    /// Allocates an `RcBox<T>` with sufficient space for
    /// a possibly-unsized inner value where the value has the layout provided,
    /// returning an error if allocation fails.
    ///
    /// The function `mem_to_rcbox` is called with the data pointer
    /// and must return back a (potentially fat)-pointer for the `RcBox<T>`.
    #[inline]
    unsafe fn try_allocate_for_layout(
        value_layout: Layout,
        allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
        mem_to_rcbox: impl FnOnce(*mut u8) -> *mut RcBox<T>,
    ) -> Result<*mut RcBox<T>, AllocError> {
        // Calculate layout using the given value layout.
        // Previously, layout was calculated on the expression
        // `&*(ptr as *const RcBox<T>)`, but this created a misaligned
        // reference (see #54908).
        let layout = Layout::new::<RcBox<()>>()
            .extend(value_layout)
            .unwrap()
            .0
            .pad_to_align();

        // Allocate for the layout.
        let ptr = allocate(layout)?;

        // Initialize the RcBox
        let inner = mem_to_rcbox(ptr.as_non_null_ptr().as_ptr());
        debug_assert_eq!(Layout::for_value(&*inner), layout);

        ptr::write(&mut (*inner).strong, Cell::new(1));
        ptr::write(&mut (*inner).weak, Cell::new(1));
        ptr::write(
            &mut (*inner).links,
            MaybeUninit::new(RefCell::new(Links::new())),
        );

        Ok(inner)
    }

    /// Allocates an `RcBox<T>` with sufficient space for an unsized inner value
    unsafe fn allocate_for_ptr(ptr: *const T) -> *mut RcBox<T> {
        // Allocate for the `RcBox<T>` using the given value.
        Self::allocate_for_layout(
            Layout::for_value(&*ptr),
            |layout| Global.allocate(layout),
            |mem| mem.with_metadata_of(ptr as *mut RcBox<T>),
        )
    }

    fn from_box(v: Box<T>) -> Rc<T> {
        unsafe {
            let (box_unique, alloc) = Box::into_raw_with_allocator(v);
            // SAFETY: Pointers obtained from `Box::into_raw` are always
            // non-null.
            let box_unique = NonNull::new_unchecked(box_unique);
            let box_ptr = box_unique.as_ptr();

            let value_size = mem::size_of_val(&*box_ptr);
            let ptr = Self::allocate_for_ptr(box_ptr);

            // Copy value as bytes
            ptr::copy_nonoverlapping(
                (box_ptr as *const T).cast::<u8>(),
                ptr::addr_of_mut!((*ptr).value).cast::<u8>(),
                value_size,
            );

            // Free the allocation without dropping its contents
            box_free(box_unique, alloc);

            Self::from_ptr(ptr)
        }
    }
}

impl<T> Deref for Rc<T> {
    type Target = T;

    #[inline(always)]
    fn deref(&self) -> &T {
        unsafe {
            let value = &self.inner().value;
            // SAFETY: we can cast the `MaybeUninit<T>` to a `T` because we are
            // calling and associated function with a live `Rc`. If an `Rc` is
            // not dead, the inner `MaybeUninit` is inhabited.
            let pointer_to_value = (value as *const MaybeUninit<T>).cast::<T>();
            &*(pointer_to_value)
        }
    }
}

impl<T> Clone for Rc<T> {
    /// Makes a clone of the `Rc` pointer.
    ///
    /// This creates another pointer to the same allocation, increasing the
    /// strong reference count.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// let _ = Rc::clone(&five);
    /// ```
    #[inline]
    fn clone(&self) -> Rc<T> {
        self.inner().inc_strong();
        Self::from_inner(self.ptr)
    }
}

impl<T: Default> Default for Rc<T> {
    /// Creates a new `Rc<T>`, with the `Default` value for `T`.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let x: Rc<i32> = Default::default();
    /// assert_eq!(*x, 0);
    /// ```
    #[inline]
    fn default() -> Rc<T> {
        Rc::new(Default::default())
    }
}

impl<T: PartialEq> PartialEq for Rc<T> {
    /// Equality for two `Rc`s.
    ///
    /// Two `Rc`s are equal if their inner values are equal, even if they are
    /// stored in different allocation.
    ///
    /// If `T` also implements `Eq` (implying reflexivity of equality),
    /// two `Rc`s that point to the same allocation are
    /// always equal.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five == Rc::new(5));
    /// ```
    #[inline]
    fn eq(&self, other: &Rc<T>) -> bool {
        **self == **other
    }

    /// Inequality for two `Rc`s.
    ///
    /// Two `Rc`s are unequal if their inner values are unequal.
    ///
    /// If `T` also implements `Eq` (implying reflexivity of equality),
    /// two `Rc`s that point to the same allocation are
    /// never unequal.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five != Rc::new(6));
    /// ```
    #[inline]
    #[allow(clippy::partialeq_ne_impl)]
    fn ne(&self, other: &Rc<T>) -> bool {
        **self != **other
    }
}

impl<T: Eq> Eq for Rc<T> {}

impl<T: PartialOrd> PartialOrd for Rc<T> {
    /// Partial comparison for two `Rc`s.
    ///
    /// The two are compared by calling `partial_cmp()` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    /// use std::cmp::Ordering;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Rc::new(6)));
    /// ```
    #[inline(always)]
    fn partial_cmp(&self, other: &Rc<T>) -> Option<Ordering> {
        (**self).partial_cmp(&**other)
    }

    /// Less-than comparison for two `Rc`s.
    ///
    /// The two are compared by calling `<` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five < Rc::new(6));
    /// ```
    #[inline(always)]
    fn lt(&self, other: &Rc<T>) -> bool {
        **self < **other
    }

    /// 'Less than or equal to' comparison for two `Rc`s.
    ///
    /// The two are compared by calling `<=` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five <= Rc::new(5));
    /// ```
    #[inline(always)]
    fn le(&self, other: &Rc<T>) -> bool {
        **self <= **other
    }

    /// Greater-than comparison for two `Rc`s.
    ///
    /// The two are compared by calling `>` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five > Rc::new(4));
    /// ```
    #[inline(always)]
    fn gt(&self, other: &Rc<T>) -> bool {
        **self > **other
    }

    /// 'Greater than or equal to' comparison for two `Rc`s.
    ///
    /// The two are compared by calling `>=` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five >= Rc::new(5));
    /// ```
    #[inline(always)]
    fn ge(&self, other: &Rc<T>) -> bool {
        **self >= **other
    }
}

impl<T: Ord> Ord for Rc<T> {
    /// Comparison for two `Rc`s.
    ///
    /// The two are compared by calling `cmp()` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    /// use std::cmp::Ordering;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert_eq!(Ordering::Less, five.cmp(&Rc::new(6)));
    /// ```
    #[inline]
    fn cmp(&self, other: &Rc<T>) -> Ordering {
        (**self).cmp(&**other)
    }
}

impl<T: Hash> Hash for Rc<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        (**self).hash(state);
    }
}

impl<T: fmt::Display> fmt::Display for Rc<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

impl<T: fmt::Debug> fmt::Debug for Rc<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T> fmt::Pointer for Rc<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Pointer::fmt(&ptr::addr_of!(**self), f)
    }
}

impl<T> From<T> for Rc<T> {
    /// Converts a generic type `T` into a `Rc<T>`
    ///
    /// The conversion allocates on the heap and moves `t`
    /// from the stack into it.
    ///
    /// # Example
    /// ```rust
    /// # use cactusref::Rc;
    /// let x = 5;
    /// let rc = Rc::new(5);
    ///
    /// assert_eq!(Rc::from(x), rc);
    /// ```
    fn from(t: T) -> Self {
        Rc::new(t)
    }
}

impl<T> From<Box<T>> for Rc<T> {
    /// Move a boxed object to a new, reference counted, allocation.
    ///
    /// # Example
    ///
    /// ```
    /// # use cactusref::Rc;
    /// let original: Box<i32> = Box::new(1);
    /// let shared: Rc<i32> = Rc::from(original);
    /// assert_eq!(1, *shared);
    /// ```
    #[inline]
    fn from(v: Box<T>) -> Rc<T> {
        Rc::from_box(v)
    }
}

/// `Weak` is a version of [`Rc`] that holds a non-owning reference to the
/// managed allocation. The allocation is accessed by calling [`upgrade`] on the `Weak`
/// pointer, which returns an [`Option`]`<`[`Rc`]`<T>>`.
///
/// Since a `Weak` reference does not count towards ownership, it will not
/// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
/// guarantees about the value still being present. Thus it may return [`None`]
/// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
/// itself (the backing store) from being deallocated.
///
/// A `Weak` pointer is useful for keeping a temporary reference to the allocation
/// managed by [`Rc`] without preventing its inner value from being dropped. It is also used to
/// prevent circular references between [`Rc`] pointers, since mutual owning references
/// would never allow either [`Rc`] to be dropped. For example, a tree could
/// have strong [`Rc`] pointers from parent nodes to children, and `Weak`
/// pointers from children back to their parents.
///
/// The typical way to obtain a `Weak` pointer is to call [`Rc::downgrade`].
///
/// [`upgrade`]: Weak::upgrade
pub struct Weak<T> {
    // This is a `NonNull` to allow optimizing the size of this type in enums,
    // but it is not necessarily a valid pointer.
    // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
    // to allocate space on the heap.  That's not a value a real pointer
    // will ever have because RcBox has alignment at least 2.
    // This is only possible when `T: Sized`; unsized `T` never dangle.
    ptr: NonNull<RcBox<T>>,
    phantom: PhantomData<RcBox<T>>,
}

/// `Weak` is not `Send`.
///
/// ```compile_fail
/// use cactusref::Weak;
/// fn requires_send<T: Send>(val: T) {}
/// let weak = Weak::<usize>::new();
/// requires_send(weak);
/// ```
mod weak_is_not_send {}

/// `Weak` is not `Sync`.
///
/// ```compile_fail
/// use cactusref::Weak;
/// fn requires_sync<T: Sync>(val: T) {}
/// let weak = Weak::<usize>::new();
/// requires_sync(weak);
/// ```
mod weak_is_not_sync {}

impl<T> Weak<T> {
    /// Constructs a new `Weak<T>`, without allocating any memory.
    /// Calling [`upgrade`] on the return value always gives [`None`].
    ///
    /// [`upgrade`]: Weak::upgrade
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Weak;
    ///
    /// let empty: Weak<i64> = Weak::new();
    /// assert!(empty.upgrade().is_none());
    /// ```
    #[must_use]
    pub fn new() -> Weak<T> {
        Weak {
            ptr: NonNull::new(usize::MAX as *mut RcBox<T>).expect("MAX is not 0"),
            phantom: PhantomData,
        }
    }
}

pub(crate) fn is_dangling<T: ?Sized>(ptr: *mut T) -> bool {
    let address = ptr.cast::<()>() as usize;
    address == usize::MAX
}

/// Helper type to allow accessing the reference counts without
/// making any assertions about the data field.
struct WeakInner<'a> {
    weak: &'a Cell<usize>,
    strong: &'a Cell<usize>,
}

impl<T> Weak<T> {
    /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
    ///
    /// The pointer is valid only if there are some strong references. The pointer may be dangling,
    /// unaligned or even [`null`] otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    /// use std::ptr;
    ///
    /// let strong = Rc::new("hello".to_owned());
    /// let weak = Rc::downgrade(&strong);
    /// // Both point to the same object
    /// assert!(ptr::eq(&*strong, weak.as_ptr()));
    /// // The strong here keeps it alive, so we can still access the object.
    /// assert_eq!("hello", unsafe { &*weak.as_ptr() });
    ///
    /// drop(strong);
    /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
    /// // undefined behaviour.
    /// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
    /// ```
    ///
    /// [`null`]: core::ptr::null
    #[must_use]
    pub fn as_ptr(&self) -> *const T {
        let ptr: *mut RcBox<T> = NonNull::as_ptr(self.ptr);

        if is_dangling(ptr) {
            // If the pointer is dangling, we return the sentinel directly. This cannot be
            // a valid payload address, as the payload is at least as aligned as RcBox (usize).
            ptr as *const T
        } else {
            // SAFETY: if is_dangling returns false, then the pointer is dereferencable.
            // The payload may be dropped at this point, and we have to maintain provenance,
            // so use raw pointer manipulation.
            //
            // SAFETY: Because we are a live `Rc`, the `MaybeUninit` `value` is
            // inhabited and can be transmuted to an initialized `T`.
            unsafe { ptr::addr_of_mut!((*ptr).value) as *const T }
        }
    }

    /// Consumes the `Weak<T>` and turns it into a raw pointer.
    ///
    /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
    /// one weak reference (the weak count is not modified by this operation). It can be turned
    /// back into the `Weak<T>` with [`from_raw`].
    ///
    /// The same restrictions of accessing the target of the pointer as with
    /// [`as_ptr`] apply.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::{Rc, Weak};
    ///
    /// let strong = Rc::new("hello".to_owned());
    /// let weak = Rc::downgrade(&strong);
    /// let raw = weak.into_raw();
    ///
    /// assert_eq!(1, Rc::weak_count(&strong));
    /// assert_eq!("hello", unsafe { &*raw });
    ///
    /// drop(unsafe { Weak::from_raw(raw) });
    /// assert_eq!(0, Rc::weak_count(&strong));
    /// ```
    ///
    /// [`from_raw`]: Weak::from_raw
    /// [`as_ptr`]: Weak::as_ptr
    #[must_use]
    pub fn into_raw(self) -> *const T {
        let result = self.as_ptr();
        mem::forget(self);
        result
    }

    /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
    ///
    /// This can be used to safely get a strong reference (by calling [`upgrade`]
    /// later) or to deallocate the weak count by dropping the `Weak<T>`.
    ///
    /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
    /// as these don't own anything; the method still works on them).
    ///
    /// # Safety
    ///
    /// The pointer must have originated from the [`into_raw`] and must still own its potential
    /// weak reference.
    ///
    /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
    /// takes ownership of one weak reference currently represented as a raw pointer (the weak
    /// count is not modified by this operation) and therefore it must be paired with a previous
    /// call to [`into_raw`].
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::{Rc, Weak};
    ///
    /// let strong = Rc::new("hello".to_owned());
    ///
    /// let raw_1 = Rc::downgrade(&strong).into_raw();
    /// let raw_2 = Rc::downgrade(&strong).into_raw();
    ///
    /// assert_eq!(2, Rc::weak_count(&strong));
    ///
    /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
    /// assert_eq!(1, Rc::weak_count(&strong));
    ///
    /// drop(strong);
    ///
    /// // Decrement the last weak count.
    /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
    /// ```
    ///
    /// [`into_raw`]: Weak::into_raw
    /// [`upgrade`]: Weak::upgrade
    /// [`new`]: Weak::new
    pub unsafe fn from_raw(ptr: *const T) -> Self {
        // See Weak::as_ptr for context on how the input pointer is derived.

        let ptr = if is_dangling(ptr as *mut T) {
            // This is a dangling Weak.
            ptr as *mut RcBox<T>
        } else {
            // Otherwise, we're guaranteed the pointer came from a nondangling Weak.
            // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T.
            let offset = data_offset(ptr);
            // Thus, we reverse the offset to get the whole RcBox.
            // SAFETY: the pointer originated from a Weak, so this offset is safe.
            (ptr as *mut u8)
                .offset(-offset)
                .with_metadata_of(ptr as *mut RcBox<T>)
        };

        // SAFETY: we now have recovered the original Weak pointer, so can create the Weak.
        Weak {
            ptr: NonNull::new_unchecked(ptr),
            phantom: PhantomData,
        }
    }

    /// Attempts to upgrade the `Weak` pointer to an [`Rc`], delaying
    /// dropping of the inner value if successful.
    ///
    /// Returns [`None`] if the inner value has since been dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// let weak_five = Rc::downgrade(&five);
    ///
    /// let strong_five: Option<Rc<_>> = weak_five.upgrade();
    /// assert!(strong_five.is_some());
    ///
    /// // Destroy all strong pointers.
    /// drop(strong_five);
    /// drop(five);
    ///
    /// assert!(weak_five.upgrade().is_none());
    /// ```
    #[must_use]
    pub fn upgrade(&self) -> Option<Rc<T>> {
        let inner = self.inner()?;
        if inner.is_dead() {
            None
        } else {
            inner.inc_strong();
            Some(Rc::from_inner(self.ptr))
        }
    }

    /// Gets the number of strong (`Rc`) pointers pointing to this allocation.
    ///
    /// If `self` was created using [`Weak::new`], this will return 0.
    #[must_use]
    pub fn strong_count(&self) -> usize {
        if let Some(inner) = self.inner() {
            if inner.is_uninit() {
                0
            } else {
                inner.strong()
            }
        } else {
            0
        }
    }

    /// Gets the number of `Weak` pointers pointing to this allocation.
    ///
    /// If no strong pointers remain, this will return zero.
    #[must_use]
    pub fn weak_count(&self) -> usize {
        self.inner().map_or(0, |inner| {
            if inner.is_uninit() {
                0
            } else if inner.strong() > 0 {
                inner.weak() - 1 // subtract the implicit weak ptr
            } else {
                0
            }
        })
    }

    /// Returns `None` when the pointer is dangling and there is no allocated `RcBox`,
    /// (i.e., when this `Weak` was created by `Weak::new`).
    #[inline]
    #[must_use]
    fn inner(&self) -> Option<WeakInner<'_>> {
        if is_dangling(self.ptr.as_ptr()) {
            None
        } else {
            // We are careful to *not* create a reference covering the "data" field, as
            // the field may be mutated concurrently (for example, if the last `Rc`
            // is dropped, the data field will be dropped in-place).
            Some(unsafe {
                let ptr = self.ptr.as_ptr();
                WeakInner {
                    strong: &(*ptr).strong,
                    weak: &(*ptr).weak,
                }
            })
        }
    }

    /// Returns `true` if the two `Weak`s point to the same allocation (similar to
    /// [`ptr::eq`]), or if both don't point to any allocation
    /// (because they were created with `Weak::new()`).
    ///
    /// # Notes
    ///
    /// Since this compares pointers it means that `Weak::new()` will equal each
    /// other, even though they don't point to any allocation.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Rc;
    ///
    /// let first_rc = Rc::new(5);
    /// let first = Rc::downgrade(&first_rc);
    /// let second = Rc::downgrade(&first_rc);
    ///
    /// assert!(first.ptr_eq(&second));
    ///
    /// let third_rc = Rc::new(5);
    /// let third = Rc::downgrade(&third_rc);
    ///
    /// assert!(!first.ptr_eq(&third));
    /// ```
    ///
    /// Comparing `Weak::new`.
    ///
    /// ```
    /// use cactusref::{Rc, Weak};
    ///
    /// let first = Weak::new();
    /// let second = Weak::new();
    /// assert!(first.ptr_eq(&second));
    ///
    /// let third_rc = Rc::new(());
    /// let third = Rc::downgrade(&third_rc);
    /// assert!(!first.ptr_eq(&third));
    /// ```
    ///
    /// [`ptr::eq`]: core::ptr::eq
    #[inline]
    #[must_use]
    pub fn ptr_eq(&self, other: &Self) -> bool {
        self.ptr.as_ptr() == other.ptr.as_ptr()
    }
}

unsafe impl<#[may_dangle] T> Drop for Weak<T> {
    /// Drops the `Weak` pointer.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::{Rc, Weak};
    ///
    /// struct Foo;
    ///
    /// impl Drop for Foo {
    ///     fn drop(&mut self) {
    ///         println!("dropped!");
    ///     }
    /// }
    ///
    /// let foo = Rc::new(Foo);
    /// let weak_foo = Rc::downgrade(&foo);
    /// let other_weak_foo = Weak::clone(&weak_foo);
    ///
    /// drop(weak_foo);   // Doesn't print anything
    /// drop(foo);        // Prints "dropped!"
    ///
    /// assert!(other_weak_foo.upgrade().is_none());
    /// ```
    fn drop(&mut self) {
        let inner = if let Some(inner) = self.inner() {
            inner
        } else {
            return;
        };

        inner.dec_weak();
        // the weak count starts at 1, and will only go to zero if all
        // the strong pointers have disappeared.
        if inner.weak() == 0 {
            unsafe {
                // SAFETY: `T` is `Sized`, which means `Layout::for_value_raw`
                // is always safe to call.
                let layout = Layout::for_value_raw(self.ptr.as_ptr());
                Global.deallocate(self.ptr.cast(), layout);
            }
        }
    }
}

impl<T> Clone for Weak<T> {
    /// Makes a clone of the `Weak` pointer that points to the same allocation.
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::{Rc, Weak};
    ///
    /// let weak_five = Rc::downgrade(&Rc::new(5));
    ///
    /// let _ = Weak::clone(&weak_five);
    /// ```
    #[inline]
    fn clone(&self) -> Weak<T> {
        if let Some(inner) = self.inner() {
            inner.inc_weak();
        }
        Weak {
            ptr: self.ptr,
            phantom: PhantomData,
        }
    }
}

impl<T: fmt::Debug> fmt::Debug for Weak<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "(Weak)")
    }
}

impl<T> Default for Weak<T> {
    /// Constructs a new `Weak<T>`, without allocating any memory.
    /// Calling [`upgrade`] on the return value always gives [`None`].
    ///
    /// [`None`]: Option
    /// [`upgrade`]: Weak::upgrade
    ///
    /// # Examples
    ///
    /// ```
    /// use cactusref::Weak;
    ///
    /// let empty: Weak<i64> = Default::default();
    /// assert!(empty.upgrade().is_none());
    /// ```
    fn default() -> Weak<T> {
        Weak::new()
    }
}

// NOTE: We checked_add here to deal with mem::forget safely. In particular
// if you mem::forget Rcs (or Weaks), the ref-count can overflow, and then
// you can free the allocation while outstanding Rcs (or Weaks) exist.
// We abort because this is such a degenerate scenario that we don't care about
// what happens -- no real program should ever experience this.
//
// This should have negligible overhead since you don't actually need to
// clone these much in Rust thanks to ownership and move-semantics.

#[doc(hidden)]
pub(crate) trait RcInnerPtr {
    fn weak_ref(&self) -> &Cell<usize>;
    fn strong_ref(&self) -> &Cell<usize>;

    #[inline]
    fn strong(&self) -> usize {
        self.strong_ref().get()
    }

    #[inline]
    fn inc_strong(&self) {
        let strong = self.strong();

        // We want to abort on overflow instead of dropping the value.
        // The reference count will never be zero when this is called;
        // nevertheless, we insert an abort here to hint LLVM at
        // an otherwise missed optimization.
        if strong == 0 || strong == usize::MAX {
            abort();
        }
        // `usize::MAX` is used to mark the `Rc` as uninitialized, so disallow
        // incrementing the strong count to prevent a memory leak and type
        // confusion in `Drop::drop`.
        if strong + 1 == usize::MAX {
            abort();
        }
        self.strong_ref().set(strong + 1);
    }

    #[inline]
    fn dec_strong(&self) {
        self.strong_ref().set(self.strong() - 1);
    }

    #[inline]
    fn weak(&self) -> usize {
        self.weak_ref().get()
    }

    #[inline]
    fn inc_weak(&self) {
        let weak = self.weak();

        // We want to abort on overflow instead of dropping the value.
        // The reference count will never be zero when this is called;
        // nevertheless, we insert an abort here to hint LLVM at
        // an otherwise missed optimization.
        if weak == 0 || weak == usize::MAX {
            abort();
        }
        self.weak_ref().set(weak + 1);
    }

    #[inline]
    fn dec_weak(&self) {
        self.weak_ref().set(self.weak() - 1);
    }

    #[inline]
    fn kill(&self) {
        self.strong_ref().set(0);
    }

    #[inline]
    fn is_dead(&self) -> bool {
        self.strong() == 0 || self.is_uninit()
    }

    #[inline]
    fn is_uninit(&self) -> bool {
        self.strong() == usize::MAX
    }

    #[inline]
    fn make_uninit(&self) {
        self.strong_ref().set(usize::MAX);
    }
}

impl<T> RcInnerPtr for RcBox<T> {
    #[inline(always)]
    fn weak_ref(&self) -> &Cell<usize> {
        &self.weak
    }

    #[inline(always)]
    fn strong_ref(&self) -> &Cell<usize> {
        &self.strong
    }
}

impl<'a> RcInnerPtr for WeakInner<'a> {
    #[inline(always)]
    fn weak_ref(&self) -> &Cell<usize> {
        self.weak
    }

    #[inline(always)]
    fn strong_ref(&self) -> &Cell<usize> {
        self.strong
    }
}

impl<T> borrow::Borrow<T> for Rc<T> {
    fn borrow(&self) -> &T {
        self
    }
}

impl<T> AsRef<T> for Rc<T> {
    fn as_ref(&self) -> &T {
        self
    }
}

impl<T> Unpin for Rc<T> {}

/// Get the offset within an `RcBox` for the payload behind a pointer.
///
/// # Safety
///
/// The pointer must point to (and have valid metadata for) a previously
/// valid instance of T, but the T is allowed to be dropped.
unsafe fn data_offset<T>(ptr: *const T) -> isize {
    let _ = ptr;

    let rcbox = MaybeUninit::<RcBox<T>>::uninit();

    let base_ptr = rcbox.as_ptr();
    let base_ptr = base_ptr as usize;

    let field_ptr = ptr::addr_of!((*(base_ptr as *const RcBox<T>)).value);
    let field_ptr = field_ptr as usize;

    (field_ptr - base_ptr) as isize
}

// Deallocate a `Box` without destroying the inner `T`.
//
// # Safety
//
// Callers must ensure that `ptr` was allocated by `Box::new` with the global allocator.
//
// Callers must ensure that `T` is not dropped.
#[inline]
unsafe fn box_free<T, A: Allocator>(ptr: NonNull<T>, alloc: A) {
    // SAFETY: `T` is `Sized`, which means `Layout::for_value_raw` is always
    // safe to call.
    let layout = Layout::for_value_raw(ptr.as_ptr());

    alloc.deallocate(ptr.cast(), layout);
}